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Global Stability of Internet Congestion Controllers
With Heterogeneous Delays

Lei Ying, Geir E. Dullerud, Senior Member, IEEE, and R. Srikant, Fellow, IEEE

Abstract—In this paper, we study the problem of designing glob-
ally stable, scalable congestion control algorithms for the Internet.
Prior work has primarily used linear stability as the criterion for
such a design. Global stability has been studied only for single node,
single source problems. Here, we obtain conditions for a general
topology network accessed by sources with heterogeneous delays.
We obtain a sufficient condition for global stability in terms of the
increase/decrease parameters of the congestion control algorithm
and the price functions used at the links.

Index Terms—Congestion control, delay system, global stability.

I. INTRODUCTION

DESIGN of congestion control algorithms for the Internet
has received much attention since the work of Kelly et al.

[11]. Lyapunov techniques were used to analyze the stability
property of congestion control algorithms in the absence of
delay. The goal of the delay-free analysis was to show that
the congestion controllers asymptotically led to fair resource
allocation [2], [11], [14], [18], [23], [31], [32]. However, such
techniques do not provide insight into how congestion control
parameters should be chosen in the presence of feedback
delays. A series of papers provided such design guidelines by
considering a linearized system and using frequency-domain
techniques: first for a single link [8], [12], [13], [21] and then
for general network topologies with an arbitrary number of
sources and heterogeneous delays [10], [14]–[16], [20], [24],
[25], [27]–[29], [34]; see [26] for a comprehensive survey. A
significant open challenge is to verify whether the design cri-
teria obtained from such linear analysis ensures global stability
or, at least, whether they ensure convergence from a large re-
gion of attraction around the equilibrium. Using Razumikhin’s
theorem, global stability and region of attraction results were
obtained in [4] and [7] for the case of congestion managements
mechanisms with a dynamic source algorithm and static link
law, the so-called primal algorithms. Analogous results were
obtained for the case of static source and dynamics algorithms,
the so-called dual algorithms, in [30]. The extension of these
to the network case has proved to be very difficult, except
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in the case of very small feedback delays [1] or with other
restrictions [5].

In this paper, we study the global stability of Internet conges-
tion controllers following the work of [4]. The key idea in [4]
is to first show that the source rates are both upper and lower
bounded and then use these bounds in Razumikhin’s theorem
to derive conditions for global stability. However, a stumbling
block in extending the results in [4] to a general network is the
difficulty in obtaining reasonable bounds on the source rates and
in finding an appropriate Lyapunov–Razumikhin function. In
this paper, we take a significant step in this direction by finding
a Lyapunov–Razumikhin function that provides global stability
conditions for a general topology network with heterogeneous
delays.

The global stability condition derived in this paper is delay-
independent and is given in terms of the increase/decrease pa-
rameters and a parameter of the price function. When the condi-
tion holds, the network is globally stable for all values of fixed
communication delays and controller gains. It is different from
most prior works, where the conditions are given in term of
the gains and the delays. Since our global stability condition
is delay-independent, the network is robust to the delays and
the gains used by users in the network. On the other hand, our
stability condition restricts the possible choices for the utility
functions and the price functions, whereas stability conditions
like [28] and [34] work for general utility functions. Character-
izing the stability region when our condition is violated, but the
local stability condition still holds, is still an open problem. Our
simulation results in Section VI indicate that the region of at-
traction could be large under such a scenario.

For our purpose, we consider a version of the scalable TCP
algorithm suggested in [28] and [34]. For this congestion con-
trol algorithm, we show that one can obtain conditions for global
stability that relate the parameters of the congestion algorithm
to the parameters of the price functions used at the links of
the network. Next, we consider a two-phase algorithm, with a
slow-start phase followed by a congestion-avoidance phase, as
in today’s version of TCP-Reno. We will show that a three-
phase approximation of this two-phase algorithm is still glob-
ally, asymptotically stable under the same conditions on the
congestion control parameters. The remainder of the paper is
organized as follows. In Section II, we present the mathematical
preliminaries required to establish our results. In Section III, we
present our system model and derive conditions for global sta-
bility. In Section IV, we discuss the relationship between our
stability conditions and stability conditions that had been ob-
tained earlier using linear analysis. In Section V, we study the
algorithm with the inclusion of a slow-start phase. In Section VI,
we validate our results with simulations. Finally, we provide the
concluding remarks in Section VII.

1063-6692/$20.00 © 2006 IEEE
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II. PRELIMINARIES

In this section, we will present some basic definitions and
the Razumikhin’s theorem that will be used to prove our main
result.

In the sequel, given an interval of the real line , we will
use to denote the set of continuous functions mapping

to , equipped with the sup norm. We define the following
important object.

Definition 1: Suppose and that is a bounded subset
of . Given and any

, let be defined by for .
Given a locally Lipschitz mapping , we say the
equation

defined for is a retarded differential equation (RFDE) with
domain .

Given an initial condition , we say that is a corre-
sponding solution if and for all . If the
RFDE has a unique solution for all initial conditions in , then
it is said to be well-posed.

The version of Razumikhin’s theorem that will play a central
role in this paper is now stated; it follows directly from [19,
Theorem 7.3.1].

Theorem 2: Suppose that the RFDE is well posed. If there
exists a continuous function which takes the
value zero only at and which satisfies the inequality

for each satisfying and
some , then every bounded solution converges
asymptotically to .

Consider a function . To ensure global
asymptotic stability, Lyapunov theory requires to decrease
for all time till the equilibrium is reached. Razumikhin’s the-
orem relaxes this condition and only requires to decrease
at every such that

(1)

Thus, as shown in Fig. 1, the Lyapunov function can increase
occasionally as long it decreases whenever it is larger than
times its maximum value over a time interval of duration . This
completes the preliminaries.

III. GLOBAL STABILITY

We consider a general topology network consisting of an ar-
bitrary number of sources and links. Each source is assumed to
use a fixed route (a collection of links) from its origin to its des-
tination and, therefore, we will use the same notation for both a
source and its route. In other words, we may use the index to
denote either source or the set of links used by source . Let

be the forward delay from source to link and
be the reverse delay from link to source . An illustration of
and is provided in Fig. 2. Denote by
the round-trip time (RTT) for source .

Fig. 1. Plot illustrating the behavior of V (t) under the conditions of Razu-
mikhin’s theorem.

Fig. 2. Network with two links.

We consider the following TCP-like congestion control algo-
rithm suggested in [28] and [34]:

(2)

where

(3)

(4)

(5)

and

Here, , , and are positive real numbers, and and
are real numbers that satisfy . In the above set of
equations, is the rate at which source transmits data, is
the arrival rate at link , is the price of link , is the price
of source ’s route, and is the function of the link arrival
rate which is used to compute . The price of a route is simply
the sum of the prices of the links along its path. Also, define the
quantities

which will be useful throughout the paper.
Associated with the model is the initial condition given by con-

tinuous functions on ; when each of these functions is
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strictly positive, we say the network model has a nonzero initial
condition. We will restrict our attention to this situation. It is pos-
sible to show that there is a unique positive equilibrium point for
the above set of equations; namely there is only one positive con-
stant solution ; see, for instance, [26, Ch. 3].

The above algorithm can be used to model the increase/de-
crease behavior of today’s versions of TCP (such as Reno and
NewReno) as well as versions of TCP that have been suggested
for scalable data transmission over very high-speed links and
over large RTTs [26]. Our first result shows that, provided the
network has a nonzero initial condition, each of the flows
is uniformly bounded from above and below, with the lower
bound being strictly greater than zero. The result provides ex-
plicit bounds in terms of the initial network condition.

Proposition 3: Suppose the network model in (2) has a
nonzero initial condition for all and that the
constant satisfies

for each

Then, each of the flows satisfies

for all time .
Proof: We will prove the desired inequality by contradic-

tion. Note from the initial condition that the bound on
holds in the interval for all .

Suppose that some flow violates the inequality on the in-
terval , then, by continuity of the functions and their
derivatives, there must exist a time such that:

(a) for each , the inequality holds
on .

(b) at time , one of following conditions holds

and (6)

and (7)

We will show that this leads to a contradiction.
Recall that the arrival rate at any link is defined as

Then, using condition (a) above, we have that

and thus

where . Now suppose that (6) holds, then
and , but from the system equation and the

above lower bound on we have

where the last inequality is derived from the equilibrium condi-
tion . Thus, (6) cannot hold. Similarly, we
can show that a contradiction arises when (7) holds. Hence, we
conclude that no such time exists and thus the sought bounds
must be valid for all flows for all time.

From Proposition 3, we have for all . So, we can
define the functions

(8)

which, by the above result, are well-defined provided that the
network model has a nonzero initial condition. Also, define the
function

(9)

Recall that, to apply Razumikhin’s theorem, we are interested
in those time instants at which

(10)

for some . The next lemma shows that, if the Lyapunov
function defined by (8) and (9) satisfies the condition in (10)
at some time instant , then this naturally imposes upper and
lower bounds on the functions over the interval .

Lemma 4: Suppose the network model has a nonzero initial
condition that at time the Lyapunov function satisfies the
condition in (10) and that index is such that

Then

(11)

for all , where and
.

Proof: First, note that, since , we have .
By the definition on , we have for each index and

that
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Note that the above inequality can be rewritten as

which implies that

From this, we get the inequalities

The next lemma then shows that the route prices are also
upper and lower bounded as a consequence of the previous
lemma.

Lemma 5: Under the conditions of Lemma 4, the price of
route at time is bounded as given by the following expression:

Proof: Similar to the bounds on used in Proposition 3,
we have

Furthermore, because , we can conclude
that

Corollary 6: If , the supposition of Lemma 4
holds and , then .

Proof: The derivative is given by

and, thus, to prove the result, we need to show that
. From (2), we see that

Since and are both positive, it is sufficient to
show that

(12)

We can show this using Lemma 5 by considering the fol-
lowing two cases. Suppose first that , then we have to
show that

From the lower bound in Lemma 5, we have

which is greater than since . Next, suppose
that . Then, we have to show that

From the upper bound in Lemma 5

which is now less than since .
This brings us to the main result of the paper.
Theorem 7: If , then the network model

in (2) is globally asymptotically stable.
Proof: By the hypothesis

and furthermore, in Proposition 3, we have shown that is
bounded. Now, invoking Razumikhin’s theorem, with and

as defined above, it is enough to prove for every
that

(13)

whenever . Fix any such and let
denote the set of indexes satisfying . Since

each function is continuous, there exists a neighborhood
of zero such that for every in this neighborhood

holds

Thus, for every positive in this neighborhood

By Lemma 6, each , and so there exists such
that

for all sufficiently near to zero. This implies (13) as
required.



YING et al.: GLOBAL STABILITY OF INTERNET CONGESTION CONTROLLERS WITH HETEROGENEOUS DELAYS 583

Control law (2) is a TCP-like algorithm. From [11] and [26],
we know that the congestion control algorithm can be inter-
preted as a distributed resource allocation scheme: suppose that
each user has a monotonically increasing and concave utility
function and the goal of the congestion control algorithm
is to allocate the resources so that the equilibrium point solves
the following optimization problem:

(14)

Under appropriate concavity assumptions, the solution of the
above problem can be obtained by solving

(15)

Comparing (15) to the equilibrium point of (2), we get

Note that this belongs to the general class of fair utility
functions introduced in [22]. Thus, our condition in Theorem
7 places a restriction on the utility function and price function.

Remark: A more commonly studied form of the controller is

Our results continue to apply to this algorithm as well. The suf-
ficient condition for global stability can be stated as follows: the
network is globally, asymptotically stable if for all

IV. LOCAL STABILITY

The global stability condition in the previous section imposes
no constraint on the gains , but rather imposes a condition
on the increase/decrease parameters of TCP and the price func-
tion. This is in contrast to the results in [28] and [34], where

is required to be smaller than some constant times the RTT
on route . We now show that the condition derived in [28] and
[34] is more conservative than what is necessary to ensure lo-
cally stability when . Consider the congestion
controller

(16)

After linearizing the system around the equilibrium point (sup-
pose and ) and then
taking the Laplace transforms, we get

Defining the Laplace routing matrix as follows [28], [34]:

if source uses link
otherwise

we have

and

Further, since and
, we can obtain

From basic control theory, the above system is stable if its poles
lie in the left half of the complex plane, i.e., the solution to

should have negative real parts, where

It is easy to see that cannot be a solution to
. Therefore,

we can equivalently check if the roots of have
negative real parts.

As in [28] and [34], it can be shown using the multivariable
Nyquist criterion that the stability condition is equivalent to the
following statement: the eigenvalues of should not en-
circle the point 1. It has been proved in [28] and [34] that

where is any eigenvalue of . Furthermore, if
, we have

which implies that , so the network is locally
stable when . Thus, the condition

given in [28] and [34] is not necessary when .
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Fig. 3. Exact region of asymptotic stability.

Next, we will use local analysis to show that
is a very tight condition for a general topology network with
heterogeneous delays to be globally asymptotically stable for
any positive and . Considering a single-source, single-link
network, the congestion control algorithm is

Linearizing the differential equation near the equilibrium point,
we get

(17)

Now, defining and , the delay
differential equation becomes

(18)

From [6, p. 135], the set of values for , , and such that (18)
is asymptotically stable is given by the shaded area of Fig. 3.
Thus, when , we can always find a
large enough such that is not in the shaded region.
This means that, when , we can always find a such
that the delay differential equation (17) is not asymptotically
stable. A single-source, single-link network is a special case of
a network, so we can conclude that is a tight
condition for a general topology network with heterogeneous
delays to be globally, asymptotically stable for any positive
and .

V. DYNAMIC PHASES AND SLOW START

Today’s TCP congestion control consists of two phases—a
slow-start phase and a congestion-avoidance phase. The slow-
start phase begins when the TCP connection is established or
congestion is indicated by a timeout. In that phase, the window
size increases by 1 for every ACK received until the window
size reaches the slow-start threshold (ssthresh). The key idea
behind using the two-phase dynamics is to use slow start to
bring the source rates near the equilibrium point very quickly

and then use congestion avoidance to make the system con-
verge to its equilibrium point [9]. The question here is that, al-
though we have shown in Section III that under the condition

the network is globally, asymptotically stable,
will stability still be preserved in the presence of a slow-start
mechanism? In this section, we investigate an approximation to
this problem. We will first introduce a two-phase discontinuous
model that acts like slow start and then approximate it with a
three-phase continuous model which we are able to analyze with
the Razumikhin–Lyapunov technique above.

First, we suppose the rate and window size satisfy
the approximate relation

(19)

Then, substituting for in terms of in (2) gives the
following window-based algorithm:

where

(20)

(21)

Motivated by TCP’s slow-start phase, we first define the two-
phase algorithm for the window evolution

if ;

if

(22)
where and is the threshold window size at which the
algorithm switches from one phase to the other. Furthermore,
we assume that for all , which means that the window
size is at least 1 when the source has data to transmit. Under this
assumption, we have that for all

(23)

Thus, source is in a fast increase regime when ; fur-
thermore, because can be any real number, so we can choose

to make the window size increase as fast as we want in this
phase. Now we have a well-defined window-based two-phase
algorithm. Use (19)–(21), we can derive the corresponding rate-
based two-phase algorithm:

if

if

(24)
where and . From (23), we have the
following inequality:

(25)
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for all . Now, since , source is in a fast increase regime
when and in a slow increase regime when

. The problem with analyzing this algorithm is that is
not continuous, so we make the following modification to the
algorithm:

if

if

(26)
where

if
if

if
if

and is a small positive number.
Notice that and

if
if .

(27)
Therefore, is continuous now, but the dynamics has three
phases. Note that, when , the derivative function in (26)
converges to the derivative function defined in the two-phase
algorithm (24). Also, from inequality (25), we have that, if

for all , then

(28)

Now we have well-defined delay-differential equations, and we
can show that, if and for all , then
the network with three-phase algorithm is globally, asymptoti-
cally stable too.

Theorem 8: Suppose . If and
for all , then the network defined by (26) is globally,

asymptotically stable.
Proof: The idea behind this proof is the same as for the

proof of Theorem 7. We will show that

if and . First, we
know that, under this two-phase algorithm, Lemmas 4 and 5 still
hold. So we have

Now let and consider . First, suppose
. In this case, the same argument as for the proof of

Theorem 7 applies and we have . Next, we consider

Fig. 4. Network used in the simulation.

TABLE I
MATLAB PROGRAM FOR THE SINGLE-PHASE ALGORITHM

. Under the assumption , we have
and

Then, based on (28), we have

So we have

which implies that , so the network is globally,
asymptotically stable.

The slow-start phase is a very important part of today’s TCP
congestion control algorithm. For the algorithms considered in
this paper, if is large, Theorem 7 tells us that we need a large

, which means the increase rate of user will be quite slow and
it will take a quite long time for the network to converge to the
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Fig. 5. Rates for � = 0:1, � = 1 and � = 5. (a) Typical user’s rate on route
1; (b) typical user’s rate on route 2; (c) typical user’s rate on route 3; (d) typical
user’s rate on route 4.

equilibrium point. But, if we use the two-phase algorithm, we
can drive the network near the equilibrium point very quickly

TABLE II
MATLAB PROGRAM FOR THE TWO-PHASE ALGORITHM

and then stabilize it. Thus, we can guarantee stability while en-
suring fast convergence.

Our analysis has two limitations. The first is the continuous
approximation of the discontinuous two-phase algorithm, with
a three-phase algorithm; since Theorem 8 is independent of the
parameter , it appears that this approximation has reasonable
motivation. Also, later, we will show through simulations that
this limitation does not appear to be significant. The second lim-
itation is that we assume . We believe that this is not a
serious limitation since we only need a rough estimate of to
choose . However, it would certainly be better if no knowl-
edge of is required at all. Despite these limitations, we be-
lieve that the proof technique here is an important first step to-
wards analyzing slow-start. In particular, it demonstrates the fact
that, if the slow-start phase ends before the equilibrium point is
reached, then global stability is preserved.

VI. SIMULATION

Thus far in the paper, we have provided a sufficient condition
for global stability. This section is devoted to further investiga-
tions of our algorithm, but now using simulations. First, we will
consider the rate of convergence. Our global stability condition
imposes no constraint on the gains , but the question arises
as to whether there are preferred values for the gains. From our
simulations, we will see that the values can be chosen judi-
ciously to make the network converge quickly.

The second thing we will consider is the impact of window
flow control using NS2 (Network Simulator). Our stability con-
dition is based on a rate-based model, but TCP implementations
are window-based. Using NS2, we will explore how our derived
condition performs in a window-based example. Accordingly,
this section will be divided into two parts. In the first part, we
will implement the TCP-like algorithm using Matlab to analyze
rate of convergence and will also implement the two-phase algo-
rithm and compare it with the single-phase case. In the second
part, we will use NS2 to implement window flow control and
observe the performance of the network.

A. Rate-Based Simulation

In this subsection, we use Matlab to implement the rate-based
algorithm. We use Matlab simulations to study two problems.
First, we study the relationship between the rate of convergence
and different choices of ; then, we implement the two-phase
algorithm to see how it helps the rate of convergence.
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Fig. 6. Two-phase algorithm versus single-phase algorithm.

The network topology we use is that shown in Fig. 4, which
has five 1-Gb/s links with 10-ms delay, and there are four routes
with 50 users on each route. The network parameters used in the
simulations are:

1) propagation delay on each link is 10 ms;
2) capacity of each link is 1 Gb/s;
3) there are 50 users on every route;
4) the route-link incidence matrix ( indicates that

route uses link ) is

We use the congestion control algorithm

and

where , , and . The initial con-
ditions (before time zero) of the individual flows are uniformly
distributed in the interval [0,2000].

1) Stability and Rate of Convergence: In Section III, we have
shown that, if , the network is globally stable for
any . However, the choice of may still influence the
transient performance of the congestion control algorithm. In
this subsection, we will study via simulation the effect of the
gains on system performance. We run the simulations for
three different values : , , and . The
discrete-time Matlab algorithm we use is shown in Table I. Here,
we use ms and run the simulation for 1 s.

The simulation results are shown in Fig. 5. We notice that,
when , the rate of convergence is quite slow; when

, the oscillation is quite big. So, the best choice among

TABLE III
PARAMETERS USED IN THE NS2 SIMULATIONS

WITH USERS HAVING IDENTICAL RTT

Fig. 7. NS2 simulation with h = 1:9 and 50 TCP connections starting at the
same time. (a) Average window size versus time (h = 1:9). (b) Window size
of a typical user versus time (h = 1:9).

these three values of seems to be . For this value of
, the rate allocated to user 1 converges fast and the oscilla-

tion is small. This suggests that, even though the network may
be stable for many values of , these parameters have to be
chosen carefully to provide a tradeoff between transient perfor-
mance and the rate at which the equilibrium is reached. We do
not have a prescription for the choice of in this paper, but it
is an important area for further study.

2) Two-Phase Algorithm: In Section V, we have shown that,
under the two-phase algorithm, the network is globally, asymp-
totically stable. Here, we implement the two-phase algorithm
(24) and compare it with the single-phase algorithm. To imple-
ment the two-phase algorithm, we modify each user’s rate up-
date as shown in Table II. For and , the
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Fig. 8. NS2 simulation with h = 10 and 50 TCP connections starting at the
same time. (a) Average window size versus time (h = 10). (b) Window size of
a typical user versus time (h = 10).

TABLE IV
MEAN AND STANDARD DEVIATIONS IN THE TIME INTERVAL [100,250]

results are shown in Fig. 6. We can see that the two-phase algo-
rithm converges faster than the single-phase one.

Note here that our implementation is a discrete-time version
of the two-phase algorithm given in (24) and not the continuous
approximation in (26). Our simulation shows that (24) might be
stable even though our analysis works only for (26).

B. NS2 Simulations

In the following simulations, NS2 is used to implement TCP-
Reno, which corresponds to , [28], [34]. We only
consider the single-link case and the link capacity is taken to be
50 Mb/s, with a one-way propagation delay of 50 ms. REM [3]

Fig. 9. NS2 simulation with h = 50 and 50 TCP connections starting at the
same time. (a) Average window size versus time (h = 50). (b) Window size of
a typical user versus time (h = 50).

is enabled so that we can estimate the link price at the sources.
The price function we use is

where is varied in the simulations to study the impact of the
global stability condition. The parameter is adjusted in each
simulation to make the equilibrium arrival rate at the link equal
to the link capacity so that the different cases can be compared
while keep the target utilization equal to one. We study the per-
formance of 50 TCP connections on this link.

1) Persistent TCP Connections: In the first set of simula-
tions, we let all 50 TCP connections start at the same time and
last for the entire duration of the simulation. We consider three
different sets of parameters given in Table III.

Here, Case 1 satisfies the global stability condition. In the
second case, the system is locally stable but does not satisfy our
global stability condition. In the third case, we can use the local
analysis to show that the system is unstable. In this simulation,
all connections start at time 0 and finish after 250 s. The simu-
lation results are shown in Figs. 7–9.
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Fig. 10. NS2 simulation with h = 1:9 and 50 TCP connections starting at
different times. (a) Average window size versus time (h = 1:9). (b) Window
size of a typical user versus time (h = 1:9).

We calculate the mean and the standard deviation in the
time interval [100,250] of both the average window size
and the window size of an individual user in Table IV.
First, we compare the stable case with the unstable case.
We can see that the standard deviations of the average
window size are almost the same. But, in the stable case,

and, in the unstable case,
. For individual users, we can

see that, for the stable case , but in the
unstable case .

Now, we compare the locally stable case with the stable case.
For a network that satisfies the local stability condition but does
not satisfy our global stability condition, the global stability con-
dition is still an open problem. From our simulations, we can
see that the stable case and local stable case have similar av-
erage window size and standard deviation. This means that even
though our global stability condition does not hold, it is pos-
sible that the region of attraction, i.e., the set of initial conditions
which ensure stability, may be large.

Fig. 11. NS2 simulation with h = 50 and 50 TCP connections starting at
different times. (a) Average window size versus time (h = 50). (b) Window
size of a typical user versus time (h = 50).

2) Simulations With Sudden Load Change: In the second
simulation, we only consider the stable case and the unstable
case. We start with 10 TCP connections first for 50 s and then
add the other 40 connections to study the transient behavior of
the network. For 10 TCP connections, the equilibrium window
size will be 26.121 for and 54.0252 for . The
simulation results are shown in Figs. 10 and 11.

From Figs. 10(a) and 11(a), first we can see that the users in
case 1 achieve the new equilibrium faster than the users in case
2 do, which is consistent with Fig. 6.

VII. CONCLUSION

An important open problem in the study of Internet conges-
tion control has been the design of congestion controllers which
are globally, asymptotically stable in a network with heteroge-
neous feedback delays. In this paper, we have established the
global stability of a class of congestion management algorithms,
i.e., a combination of congestion controllers at the sources and
congestion signaling mechanisms at the routers. The proof of
global stability is obtained by placing certain restrictions on the
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increase/decrease parameters of TCP and the parameters of the
link price functions. A similar result for a slightly different class
of single-phase controllers has been obtained in [17] indepen-
dently using different techniques. A significant open question
for further research is the following: for congestion management
algorithms that are outside the class considered in this paper, is
it possible to stabilize the system using a slow-start procedure to
bring the system close to its equilibrium and choosing the con-
trol parameters to ensure local stability?
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