
Performance Evaluation 81 (2014) 20–39

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Heavy traffic optimal resource allocation algorithms for cloud
computing clusters
Siva Theja Maguluri a,∗, R. Srikant a, Lei Ying b

a Department of ECE and CSL, University of Illinois at Urbana–Champaign, 1308 W Main Street, Urbana, IL 61801, USA
b School of ECEE, 436 Goldwater Center, Arizona State University, Tempe, AZ 85287, USA

a r t i c l e i n f o

Article history:
Received 11 February 2013
Received in revised form 6 August 2014
Accepted 19 August 2014
Available online 27 August 2014

Keywords:
Scheduling
Load balancing
Cloud computing
Resource allocation

a b s t r a c t

Cloud computing is emerging as an important platform for business, personal and mobile
computing applications. In this paper, we study a stochastic model of cloud computing,
where jobs arrive according to a stochastic process and request resources like CPU,memory
and storage space. We consider a model where the resource allocation problem can be
separated into a routing or load balancing problem and a scheduling problem. We study
the join-the-shortest-queue routing and power-of-two-choices routing algorithms with
the MaxWeight scheduling algorithm. It was known that these algorithms are throughput
optimal. In this paper,we show that these algorithms are queue length optimal in the heavy
traffic limit.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing services are emerging as an important resource for personal as well as commercial computing
applications. Several cloud computing systems are now commercially available, including Amazon EC2 system [1], Google’s
AppEngine [2] and Microsoft’s Azure [3]. A comprehensive survey on cloud computing can be found in [4–6].

In this paper, we focus on cloud computing platforms that provide infrastructure as service. Users submit requests for
resources in the formof virtualmachines (VMs). Each request specifies the amount of resources it needs in terms of processor
power, memory, storage space, etc. We call these requests jobs. The cloud service provider first queues these requests and
then schedules them on physical machines called servers.

Each server has a limited amount of resources of each kind. This limits the number and types of jobs that can be scheduled
on a server. The set of jobs of each type that can be scheduled simultaneously at a server is called a configuration. The convex
hull of the possible configurations at a server is the capacity region of the server. The total capacity region of the cloud is
then the Minkowski sum of the capacity regions of all servers.

The simplest architecture for serving the jobs is to queue them at a central location. In each time slot, a central scheduler
chooses the configuration at each server and allocates jobs to the servers, in a preemptivemanner. As pointed out in [7], this
problem is then identical to scheduling in an ad hoc wireless network with interference constraints. In practice, however,
jobs are routed to servers upon arrival. Thus, queues are maintained at each individual server. It was shown in [7–9] that
using join-the-shortest queue-type algorithms for routing, along with the MaxWeight scheduling algorithm [10] at each
server is throughput optimal. The focus of this paper is to study the delay, or equivalently, the queue length performance of
the algorithms presented in [7].

∗ Corresponding author. Tel.: +1 2174171631.
E-mail addresses: siva.theja@gmail.com (S.T. Maguluri), rsrikant@illinois.edu (R. Srikant), lei.ying.2@asu.edu (L. Ying).

http://dx.doi.org/10.1016/j.peva.2014.08.002
0166-5316/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.peva.2014.08.002
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2014.08.002&domain=pdf
mailto:siva.theja@gmail.com
mailto:rsrikant@illinois.edu
mailto:lei.ying.2@asu.edu
http://dx.doi.org/10.1016/j.peva.2014.08.002

S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39 21

Characterizing the exact delay or queue length in general is difficult. So, we study the system in the heavy-traffic regime,
i.e., when the exogenous arrival rate is close to the boundary of the capacity region.We say that an algorithm is heavy traffic
optimal if it minimizes limϵ→0 ϵE [f (q)] where ϵ is the distance of the arrival rate vector from the boundary of the capacity
region, q is the queue length vector and f (.) is a function which we will clearly define later.

In the heavy-traffic regime, for some systems, the multi-dimensional state of the system reduces to a single dimension,
called state-space collapse. In [11,12], a method was outlined to use the state-space collapse for studying the diffusion
limits of several queuing systems. This procedure has been successfully applied to a variety of multiqueuemodels served by
multiple servers [13–16]. Stolyar [17] generalized this notion of state-space collapse and resource pooling to a generalized
switch model, where it is hard to define work-conserving policies. This was used to establish the heavy traffic optimality of
the MaxWeight algorithm.

Most of these results are based on considering a scaled version of queue lengths and time, which converges to a regulated
Brownian motion, and then show sample-path optimality in the scaled time over a finite time interval. This then allows a
natural conjecture about steady state distribution. In [18], the authors present an alternate method to prove heavy traffic
optimality that is not only simpler, but shows heavy traffic optimality in unscaled time. In addition, this method directly
obtains heavy traffic optimality in steady state. The method consists of the following three steps.

1. Lower bound: First a lower bound is obtained on theweighted sumof expected queue lengths by comparingwith a single-
server queue. A lower bound for the single-server queue, similar to the Kingman bound [19], then gives a lower bound to
the original system. This lower bound is a universal lower bound satisfied by any joint routing and scheduling algorithm.

2. State-space collapse: The second step is to show that the state of the system collapses to a single dimension. Here, it is not
a complete state-space collapse, as in the Brownian limit approach, but an approximate one. In particular, this step is to
show that the queue length along a certain direction increases as the exogenous arrival rate gets closer to the boundary
of the capacity region but the queue length in any perpendicular direction is bounded.

3. Upper bound: The state-space collapse is then used to obtain an upper bound on the weighted queue length. This
is obtained by using a natural Lyapunov function suggested by the resource pooling. Heavy traffic optimality can be
obtained if the upper bound coincides with the lower bound.

In this paper, we apply the above three step procedure to study the resource allocation algorithms presented in [7]. We
briefly review the results in [7] now. Jobs are first routed to the servers, and are then queued at the servers, and a scheduler
schedules jobs at each server. So, we need an algorithm that has two components, viz.,

1. a routing algorithm that routes new jobs to servers in each time slot (we assume that the jobs are assigned to a server
upon arrival and they cannot be moved to a different server) and

2. a scheduling algorithm that chooses the configuration of each server, i.e., in each time slot, it decides which jobs to serve.
Here we assume that jobs can be preempted, i.e., a job can be served in a time slot, and then be preempted if it is not
scheduled in the next time slot. Its service can be resumed in the next time it is scheduled. Such a model is applicable in
situations where job sizes are typically large.

It was shown in [7] that using the join-the-shortest-queue (JSQ) routing and MaxWeight scheduling algorithm is
throughput optimal. In Section 3, we show that this policy is queue length optimal in the heavy traffic limit when all the
servers are identical.Weuse the three step procedure described above to prove the heavy traffic optimality. The lower bound
in this case is identical to the case of the MaxWeight scheduling problem. However, state-space collapse does not directly
follow from the corresponding results for the MaxWeight algorithm in [18] due to the additional routing step here. We use
this to obtain an upper bound that coincides with the lower bound in the heavy traffic limit.

JSQ needs queue length information of all servers at the router. In practice, this communication overhead can be quite
significant when the number of servers is large. An alternative algorithm is the power-of-two-choices routing algorithm.
In each time slot, two servers are chosen uniformly at random and new arrivals are routed to the server with the shorter
queue. It was shown in [7] that the power-of-two-choices routing algorithmwith the MaxWeight scheduling is throughput
optimal if all the servers are identical. Here, we show that the heavy traffic optimality in this case is a minor modification of
the corresponding result for JSQ routing and MaxWeight scheduling.

A special case of the resource allocation problem is when all the jobs are of the same type. In this case, scheduling is
not required at each server. The problem reduces to a routing-only problem which is well studied [20–24]. For reasons
to be explained later, the results from Section 3 cannot be applied in this case since the capacity region is along a single
dimension (of the form λ < µ). In Section 4, we show the heavy traffic optimality of the power-of-two-choices routing
algorithm. The lower and upper bounds in this case are identical to the case of JSQ routing in [18]. The main contribution
here is to show state-space collapse, which is somewhat different compared to [18]. The results here complement the heavy
traffic optimality results in [22,23] which were obtained using Brownian motion limits.

We note that this paper is a longer version of [25]. In [25], certain details were omitted in the proofs in Sections 3.2, 3.3
and 4.3 due to space limitations. Here we provide the missing proofs.

Note on Notation: The set of real numbers, the set of nonnegative real numbers and the set of positive real numbers are
denoted by R, R+ and R++ respectively. We denote vectors in RJ or RM by x, in normal font. We use bold font x to denote
vectors in RJM . The dot product in the vector spaces RJ or RM is denoted by ⟨x, y⟩ and the dot product in RJM is denoted by
⟨x, y⟩.

22 S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39

2. Systemmodel and algorithm

Consider a discrete time cloud computing system as follows. There areM servers indexed bym. Each server has I different
kinds of resources such as processing power, disk space, memory, etc. Server m has Ri,m units of resource i for i ∈ {1, 2,
3, . . . , I}. There are J different types of jobs indexed by j. Jobs of type j need ri,j units of resource i for their service. A job is
said to be of size D if it takes D units of time to finish its service. Let Dmax be the maximum allowed service time.

Let Aj(t) denote the set of type j jobs that arrive at the beginning of time slot t . Indexing the jobs in Aj(t) from 1 through
|Aj(t)|, we define aj(t) =

k∈Aj(t)

Dk to be the overall size of the jobs in Aj(t) or the total time slots requested by the
jobs in Aj(t). Thus, aj(t) denotes the total work load of type j that arrives in time slot t . We assume that aj(t) is a stochastic
process which is i.i.d. across time slots, E[aj(t)] = λj and Pr(aj(t) = 0) > ϵA for some ϵA > 0 for all j and t . Many
of these assumptions can be relaxed, but we make these assumptions for the ease of exposition. Second moments of the
arrival processes are assumed to be bounded. Let var[aj(t)] = σ 2

j , λ = (λ1, . . . , λJ) and σ = (σ1, . . . , σJ). We denote
σ 2

= (σ 2
1 , . . . , σ 2

J).
In each time slot, the central router routes the new arrivals to one of the servers. Each server maintains J queues

corresponding to the work loads of the J different types of jobs. Let qj,m(t) denote the total backlogged job size of the type j
jobs at serverm at time slot t .

Consider server m. We say that server m is in configuration s = (s1, s2, . . . , sJ) ∈ (Z+)J if the server is serving s1 jobs of
type 1, s2 jobs of type 2, etc. This is possible only if the server has enough resources to accommodate all these jobs. In other
words,

J
j=1 sjri,j ≤ Ri,m ∀i ∈ {1, 2, . . . , I}. Let smax be themaximumnumber of jobs of any type that can be scheduled on any

server. Let Sm be the set of feasible configurations on server m. We say that s is a maximal configuration if no other job can
be accommodated i.e., for every j′, s+ej′ (where ej′ is the unit vector along j′) violates at least one of the resource constraints.
Let C∗

m be the convex hull of the maximal configurations of server m. Let Cm = {s ∈ (R+)J : s ≤ s∗ for some s∗ ∈ C∗
m}. Here

s ≤ s∗ means sj ≤ s∗j ∀j ∈ {1, 2, . . . , J}.Cm can be thought of as the capacity region for serverm. Note that ifλ ∈ interior(Cm),
there exists an ϵ > 0 such that λ(1 + ϵ) ∈ Cm. Cm is a convex polytope in the nonnegative quadrant of RJ .

Define C =
M

m=1 Cm = {s ∈ (R+)J : ∃sm ∈ Cm ∀ m s.t. s ≤
M

m=1 s
m
}. We denote this as C =

M
m=1 Cm. Here sm just

denotes an element in Cm and not mth power of s. Then, C =
M

m=1 Cm, where

denotes the Minkowski sum of sets. So,
C is again a convex polytope in the nonnegative quadrant of RJ . So, C can be described by a set of hyperplanes as follows:

C =

s ≥ 0 :

c(k), s

≤ b(k), k = 1, . . . , K

where K is the number of hyperplanes that completely defines C, and (c(k), b(k)) completely defines the kth hyperplane
H (k),

c(k), s

= b(k). Since C is in the first quadrant, we have

∥c(k)
∥ = 1, c(k)

≥ 0, b(k)
≥ 0 for k = 1, 2, . . . , K .

It was shown in [7] that C is the capacity region of this system. Similar to C, define S =
M

m=1 Sm. WLOG, we assume
that the C is full-dimensional, i.e., it is J-dimensional.

Lemma 1. Given the kth hyperplane H (k) of the capacity region C (i.e.,

c(k), λ

= b(k)), for each server m, there is a b(k)

m such

that

c(k), λ

= b(k)

m is the boundary of the capacity region Cm, and b(k)
=
M

m=1 b
(k)
m . Moreover, for every set

λ

(k)
m ∈ Cm

m
such

that λ(k)
=
M

m=1 λ
(k)
m and λ(k)

∈ C lies on the kth hyperplane H (k), we have that

c(k), λ

(k)
m

= b(k)

m .

Proof. Define b(k)
m = maxs∈Cm

c(k), s

. Then, since

C =

M
m=1

Cm, we have that b(k)
=

M
m=1

b(k)
m .

Again, by the definition of C, for every λ ∈ C, there are λ
(k)
m ∈ Cm for each m such that λ(k)

=
M

m=1 λ
(k)
m . However,

these may not be unique. We will prove that for every such

λ

(k)
m

m
, for eachm,

c(k), λ

(k)
m

= b(k)

m . Suppose, for some server

m1,

c(k), λ

(k)
m1

< b(k)

m1 . Then since

c(k),

M
m=1 λ

(k)
m

=
M

m=1 b
(k)
m , there exists m2 such that

c(k), λ

(k)
m2

> b(k)

m2 which is a
contradiction. Thus, we have the lemma. �

3. JSQ routing and MaxWeight scheduling

In this section, we will study the performance of JSQ routing with MaxWeight scheduling, as described in Algorithm 1.
Let Yj,m(t) denote the state of the queue for type j jobs at serverm, where Y i

j,m(t) is the (backlogged) size of the ith type j
job at serverm. It is easy to see that Y(t) = {Yj,m(t)}j,m is a Markov chain under the JSQ routing and MaxWeight scheduling.
Then, qj,m(t) =

i Y

i
j,m(t) is a function of the state Yj,m(t).

S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39 23

Algorithm 1 JSQ Routing and MaxWeight Scheduling
1. Routing Algorithm: All the type j arrivals in a time slot are routed to the server with the smallest queue length for type j

jobs, i.e., the serverm∗

j = argmin
m∈{1,2,...M}

qj,m. Ties are broken uniformly at random.

2. Scheduling Algorithm: In each time slot, server m chooses a configuration sm ∈ C∗
m so that sm = argmax

sm∈C∗
m

J
j=1

smj qj,m. It then

schedules up to a maximum of smj jobs of type j (in a preemptive manner). Note that even if the queue length is greater
than the allocated service, all of it may not be utilized, e.g., when the backlogged size is from a single job, since different
chunks of the same job cannot be scheduled simultaneously. Denote the actual number of jobs chosen by smj . Note that if
qj,m ≥ Dmaxsmax, then smj = smj .

The queue lengths of workload evolve according to the following equation:

qj,m(t + 1) = qj,m(t) + aj,m(t) − smj (t)

= qj,m(t) + aj,m(t) − smj (t) + uj,m(t) (1)

where uj,m(t) is the unused service, given by uj,m(t) = smj (t)−smj (t), smj (t) is theMaxWeight schedule and smj (t) is the actual
schedule chosen by the scheduling algorithm and the arrivals are

aj,m(t) =

aj(t) ifm = m∗

j (t)
0 otherwise. (2)

Here,m∗

j is the server chosen by the routing algorithm for type j jobs. Note that

uj,m(t) = 0 when qj,m(t) + aj,m(t) ≥ Dmaxsmax. (3)

Also, denote s = (sj)j where

sj =

M
m=1

smj . (4)

Denote a = (aj,m)j,m, s = (smj)j,m and u = (uj,m)j,m. Also denote 1 to be the vector with 1 in all components.
It was shown in [7] that this algorithm is throughput optimal. Here, we will show that this algorithm is heavy traffic

optimal.
Recall that the capacity region is bounded by K hyperplanes, each hyperplane H (k) described by its normal vector c(k)

and the value b(k). Then, for any λ ∈ interior(C), we can define the distance of λ toH (k) and the closest point, respectively, as

ϵ(k)
= min

s∈H(k)
∥λ − s∥ (5)

λ(k)
= λ + ϵ(k)c(k)

where ϵ(k) > 0 for each k since λ ∈ interior(C). We let ϵ ,

ϵ(k)
K
k=1 denote the vector of distances to all hyperplanes. Note

that λ(k) may be outside the capacity region C for some hyperplanes. So define

Kλ ,

k ∈ {1, 2, . . . , K} : λ(k)

∈ C

;

Kλ identifies the set of dominant hyperplaneswhose closest point to λ is on the boundary of the capacity regionC, and hence
is a feasible average rate for service. Note that for any λ ∈ interior(C), the set Kλ is non-empty, and hence is well-defined.
We further define

Ko
λ ,

k ∈ Kλ : λ(k)

∈ Relint(F (k))

where F (k) denotes the face on which λ(k) lies and Relint means relative interior. Thus, Ko
λ is the subset of faces in Kλ for

which the projection of λ is not shared by more than one hyperplane.
For ϵ ,

ϵ(k)
K
k=1 > 0, let λ(ϵ) be the arrival rate in the interior of the capacity region so that its distance from the

hyperplane H (k) is ϵ(k). Let λ(k) be the closest point to λ(ϵ) on H (k). Thus, we have

λ(k)
= λ(ϵ)

+ ϵ(k)c(k). (6)

Let q(ϵ)(t) be the queue length process when the arrival rate is λ(ϵ).

Define c(k)
∈ RJM

+ , indexed by j,m as c(k)
j,m =

c(k)j
√
M
. We expect that the state-space collapse occurs along the direction c(k).

This is intuitive. For a fixed j, JSQ routing tries to equalize the queue lengths across servers. For a fixed server m, we expect
that the state-space collapse occurs along c(k) when approaching the hyperplaneH (k), as shown in [18]. Thus, for JSQ routing
and MaxWeight, we expect that the state-space collapse occurs along c(k) in RJM .

24 S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39

For each k ∈ Ko
λ(ϵ) , define the projection and perpendicular component of q(ϵ) to the vector c(k) as follows:

q(ϵ,k)
∥

,

c(k), q(ϵ)

c(k)

q(ϵ,k)
⊥

, q(ϵ)
− q(ϵ,k)

∥
.

In this section, we will prove the following proposition.

Proposition 1. Consider the cloud computing system described in Section 2. Assume all the servers are identical, i.e., Ri,m = Ri
for all servers m and resources i and that JSQ routing and MaxWeight scheduling as described in Algorithm 1 is used. Let the
exogenous arrival rate be λ(ϵ)

∈ Interior(C) and the standard deviation of the arrival vector be σ (ϵ)
∈ RJ

++ where the parameter
ϵ =

ϵ(k)
K
k=1 is such that ϵ(k) is the distance of λ(ϵ) from the kth hyperplane H (k) as defined in (5). Then for each k ∈ Ko

λ(ϵ) , the
steady state queue length satisfies

ϵ(k)E

c(k), q(t)

≤

ζ (ϵ,k)

2
+ B(ϵ,k)

2

where ζ (ϵ,k)
=

1
√
M

c(k)
2

,

σ (ϵ)

2
+

ϵ(k)

2
√
M

, B(ϵ,k)
2 is o(1

ϵ(k)).

In the heavy traffic limit as ϵ(k)
↓ 0, this bound is tight, i.e.,

lim
ϵ(k)↓0

ϵ(k)E

c(k), q(ϵ)

=

ζ (k)

2

where ζ (k)
=

1
√
M

c(k)
2

, (σ)2

.

We will prove this proposition by following the three step procedure described in Section 1, by first obtaining a lower
bound, then showing state-space collapse and finally using the state-space collapse result to obtain an upper bound.

3.1. Lower bound

Since λ(ϵ) is in the interior of C, the process

q(ϵ)(t)

t has a steady state distribution. We will obtain a lower bound on

E

c(k), q(ϵ)

= E

J
j=1

c(k)j
√
M

M
m=1 qjm

in steady state using the lower bound on the queue length of a single-server

queue. For the cloud system, given the capacity region and the face F (k), we will construct a single-server queue with
appropriate arrivals and service rates to obtain a lower bound.

Consider a single-server queuing system, φ(ϵ)(t) with arrival process 1
√
M

c(k), a(ϵ)(t)

and service process given by b(k)

√
M

at each time slot. Then φ(t) is stochastically smaller than

c(k), q(t)(ϵ)

. Thus, we have

E

c(k), q(ϵ)

≥ E

φ(ϵ)

.

Using φ2 as the Lyapunov function for the single-server queue and noting that the drift of it should be zero in steady state,
one can bound E

φ

(ϵ)

as follows [18]:

ϵ(k)E

φ

(ϵ)

≥
ζ (ϵ,k)

2
− B(ϵ,k)

1

where

c(k)
2

=

c(k)
j

2J

j=1
, B(ϵ,k)

1 =
b(k)ϵ(k)

2 and ζ (ϵ,k)
=

1
√
M

c(k)
2

,

σ (ϵ)

2
+

ϵ(k)

2
√
M

.

Thus, in the heavy traffic limit as ϵ(k)
↓ 0, we have that

lim
ϵ(k)↓0

ϵ(k)E

c(k), q(ϵ)

≥

ζ (k)

2
(7)

where ζ (k)
=

1
√
M

c(k)
2

, (σ)2

.

Note that this lower bound is a universal lower bound that is valid for any joint routing and scheduling algorithm.

3.2. State-space collapse

In this subsection, we will show that there is a state-space collapse along the direction c(k). We know that as the arrival
rate approaches the boundary of the capacity region, i.e., ϵ(k)

→ 0, the steady state mean queue length E[∥q∥] → ∞.
We will show that as ϵ(k)

→ 0, the queue length projected along any direction perpendicular to c(k) is bounded. This is

S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39 25

Fig. 1. Illustration of the capacity region, the vector c(k) and state-space collapse. As the arrival rate approaches the boundary of the capacity region, the
queue length vector q is increasing as O(1

ϵ
). But the component perpendicular to c, i.e. q⊥ is bounded.

illustrated in Fig. 1. So the constant does not contribute to the first order term in 1
ϵ(k) , in which we are interested. Therefore,

it is sufficient to study a bound on the queue length along c(k). This is called state-space collapse.
Define the following Lyapunov functions:

V (q) ,

M
m=1

J
j=1

q2j,m, W (k)
⊥

(q) ,

q(k)
⊥

 , W (k)
∥

(q) ,

q(k)
∥

V (k)

∥
(q) ,

c(k), q(ϵ)

2
=

q(k)
∥

2 =
1
M

M

m=1

J
j=1

qj,mcj

2

.

Define the drift of the above Lyapunov functions:
∆V (q) , [V (q(t + 1)) − V (q(t))] I(q(t) = q)

∆W (k)
⊥

(q) ,

W (k)

⊥
(q(t + 1)) − W (k)

⊥
(q(t))

I(q(t) = q)

∆W (k)
∥

(q) ,

W (k)

∥
(q(t + 1)) − W (k)

∥
(q(t))

I(q(t) = q)

∆V (k)
∥

(q) ,

V (k)

∥
(q(t + 1)) − V (k)

∥
(q(t))

I(q(t) = q).

To show that the state-space collapse happens along the direction of c(k), we will need a result by Hajek [26], which
gives a bound on

q(k)
⊥

 if the drift of W (k)
⊥

(q) is negative. Here we use the following special case of the result by Hajek, as
presented in [18].

Lemma 2. For an irreducible and aperiodic Markov Chain {X[t]}t≥0 over a countable state space X, suppose Z : X → R+ is a
nonnegative-valued Lyapunov function. We define the drift of Z at X as

∆Z(X) , [Z(X[t + 1]) − Z(X[t])]I(X[t] = X),

where I(.) is the indicator function. Thus, ∆Z(X) is a random variable that measures the amount of change in the value of Z in
one step, starting from state X. This drift is assumed to satisfy the following conditions:
1. There exists an η > 0 and a κ < ∞ such that for all X ∈ X with Z(X) ≥ κ,

E[∆Z(X)|X[t] = X] ≤ −η.

2. There exists a D < ∞ such that for all X ∈ X,

P (|∆Z(X)| ≤ D) = 1.

Then, there exists a θ ⋆ > 0 and a C⋆ < ∞ such that

lim sup
t→∞

E

eθ⋆Z(X[t])

≤ C⋆.

If we further assume that the Markov Chain {X[t]}t is positive recurrent, then Z(X[t]) converges in distribution to a random
variable Z̄ for which

E

eθ⋆ Z̄

≤ C⋆,

which directly implies that all moments of Z̄ exist and are finite.

26 S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39

We also need Lemma 7 from [18], which gives the drift ofW (k)
⊥

(q) in terms of drifts of V (q) and V (k)
∥

(q).

Lemma 3. Drift of W (k)
⊥

can be bounded as follows:

∆W (k)
⊥

(q) ≤
1

2
q(k)

⊥

 (∆V (q) − ∆V (k)
∥

(q)) ∀ q ∈ RJ
+. (8)

Let us first consider the last term in this inequality:

E

△ V (k)

∥
(q(ϵ))

 q(ϵ)(t) = q(ϵ)

= E

V (k)

∥
(q(ϵ)(t + 1)) − V (k)

∥
(q(ϵ)(t))

 q(ϵ)(t) = q(ϵ)

= E

c(k), q(ϵ)(t + 1)

2
−

c(k), q(ϵ)(t)

2 q(t) = q(ϵ)

= E

c(k), q(ϵ)(t) + a(ϵ)(t) − s(ϵ)(t) + u(ϵ)(t)
2

−

c(k), q(ϵ)(t)

2 q(t) = q(ϵ)

= E

c(k), q(ϵ)(t) + a(ϵ)(t) − s(ϵ)(t)

2
+

c(k),u(ϵ)(t)

2
−

c(k), q(ϵ)(t)

2
+ 2

c(k), q(ϵ)(t) + a(ϵ)(t) − s(ϵ)(t)

c(k),u(ϵ)(t)

 q(t) = q(ϵ)

≥ E

c(k), a(ϵ)(t) − s(ϵ)(t)

2
− 2

c(k), s(ϵ)(t)

c(k),u(ϵ)(t)

+ 2

c(k), q(ϵ)(t)

c(k), a(ϵ)(t) − s(ϵ)(t)

 q(t) = q(ϵ)

≥ 2

c(k), q(ϵ)

c(k), E

a(ϵ)(t)

 q(t) = q(ϵ)

− E

s(ϵ)(t)

 q(t) = q(ϵ)

− 2

c(k), smax1

2
=

2∥q(ϵ,k)
∥

∥
√
M

J
j=1

cj

M

m=1

E

a(ϵ)
j,m(t)|q(t) = q(ϵ)

−

M
m=1

E

sm(ϵ)
j (t)|q(t) = q(ϵ)

− K2

=
2∥q(ϵ,k)

∥
∥

√
M

J
j=1

cj

λ

(ϵ)
j −

M
m=1

E

sm(ϵ)
j (t)|q(t) = q(ϵ)

− K2 (9)

=
2∥q(ϵ,k)

∥
∥

√
M

J
j=1

cj

λ

(k)
j − ϵ(k)c(k)

j −

M
m=1

E

sm(ϵ)
j (t)|q(t) = q(ϵ)

− K2 (10)

=
2∥q(ϵ,k)

∥
∥

√
M

J
j=1

cj

M

m=1

λ
m(k)
j −

M
m=1

E

sm(ϵ)
j (t)|q(t) = q(ϵ)

− K2 −

2ϵ(k)

√
M

∥q(ϵ,k)
∥

∥ (11)

=
2∥q(ϵ,k)

∥
∥

√
M

M
m=1

J
j=1

cj

λ
m(k)
j − E

sm(ϵ)
j (t)|q(t) = q(ϵ)

− K2 −

2ϵ(k)

√
M

∥q(ϵ,k)
∥

∥

≥ −K2 −
2ϵ(k)

√
M

∥q(ϵ,k)
∥

∥ (12)

whereK2 = 2JMs2max. Eq. (9) follows from the fact that the sumof arrival rates at each server is the same as the external arrival
rate. Eq. (10) follows from (6). From the definition of C, we have that there exists λm(k)

∈ Cm such that λ(k)
=
M

m=1 λm(k).
This gives (11). From Lemma 1, we have that for eachm, there exists b(k)

m such that
J

j=1 cjλ
m(k)
j = b(k)

m and

c(k), sm(ϵ)

≤ b(k)

m

for every sm(ϵ)(t) ∈ Cm. Therefore, we have, for eachm,
J

j=1

cj

λ
m(k)
j − E

sm(ϵ)
j (t)|q(t) = q(ϵ)

≥ 0

and so (12) is true.
Now, let us consider the first term in (8). By expanding the drift of V (q(ϵ)) and using (3), it can be easily seen that

E

△ V (q(ϵ))|q(ϵ)(t) = q(ϵ)

≤ K ′

+ Eq(ϵ)

M

m=1

J
j=1

2q(ϵ)

j,m

aj,m(t) − smj (t)

(13)

where K ′
= M

j

λ2
j + σ 2

j

+ 2Js2max(1 + Dmax)

and Eq(ϵ) [.] is short hand for E[.|q(ϵ)(t) = q(ϵ)

].

S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39 27

By the definition of aj,m(t), (2), we have

Eq(ϵ)

M

m=1

J
j=1

2q(ϵ)
j,maj,m(t)

= Eq(ϵ)

J

j=1

2q(ϵ)

j,m∗
j
aj(t)

=

J
j=1

2q(ϵ)

j,m∗
j
λ

(ϵ)
j .

Then we have

E

△ V (q(ϵ))|q(ϵ)(t) = q(ϵ)

≤ K ′

+ 2
J

j=1

λ
(ϵ)
j q(ϵ)

j,m∗
j
− 2

M
m=1

Eq(ϵ)

J

j=1

q(ϵ)
j,ms

m
j (t)

= K ′
+ 2

J
j=1

λ
(ϵ)
j q(ϵ)

j,m∗
j
− 2

J
j=1

λ
(ϵ)
j

M
m=1

q(ϵ)
j,m

M
(14)

+ 2
J

j=1

λ
(ϵ)
j

M
m=1

q(ϵ)
j,m

M
− 2

M
m=1

Eq(ϵ)

J

j=1

q(ϵ)
j,ms

m
j (t)

. (15)

We will first bound the terms in (14). We will assume that the arrival rate λ(ϵ) is such that there exists a δ > 0 such
that λ

(ϵ)
j > δ for all j. This assumption is reasonable because we are interested in the limit when the arrival rate is on the

boundary of the capacity region:

2
J

j=1

λ
(ϵ)
j

q(ϵ)

j,m∗
j
−

M
m=1

q(ϵ)
j,m

M

= −2

J
j=1

λ
(ϵ)
j

 M
m=1

q(ϵ)
j,m

M
−

q(ϵ)

j,m∗
j

M

= −

2
M

J
j=1

λ
(ϵ)
j

M

m=1

q(ϵ)
j,m − q(ϵ)

j,m∗
j

≤ −
2
M

J
j=1

λ
(ϵ)
j

 M

m=1

q(ϵ)
j,m − q(ϵ)

j,m∗
j

2 (16)

≤ −
2
M

J
j=1

λ
(ϵ)
j

 M

m=1

q(ϵ)
j,m −

1
M

M
m′=1

q(ϵ)

j,m′

2
 (17)

≤ −
2
M

J
j=1

δ

 M

m=1

q(ϵ)
j,m −

1
M

M
m′=1

q(ϵ)

j,m′

2
 (18)

= −
2δ
M

J
j=1

 M
m=1

q(ϵ)
j,m

2
−

1
M

M

m′=1

q(ϵ)

j,m′

2

≤ −
2δ
M

 J
j=1

M
m=1

q(ϵ)
j,m

2
−

1
M

J
j=1

M

m′=1

q(ϵ)

j,m′

2

. (19)

Eq. (16) follows from the fact that the ℓ1 norm of a vector is no more than its ℓ2 norm for a vector in RM . The minimum
mean square constant estimator of a vector is its empirical mean. In other words, for a vector x in RM , the convex function

m(xm − y)2 is minimized for y =
1
M

m xm. This gives (17). Eq. (18) follows from the assumption that λ

(ϵ)
j > δ. Eq. (19)

follows from the observation that (

j
√
xj)2 ≥

j xj.

We will now bound the terms in (15):

2
J

j=1

λ
(ϵ)
j

M
m=1

q(ϵ)
j,m

M
− 2

M
m=1

Eq(ϵ)

J

j=1

q(ϵ)
j,ms

m
j (t)

=

J
j=1

2

λ

(k)
j − ϵ(k)c(k)

j

 M
m=1

q(ϵ)
j,m

M
− 2

M
m=1

Eq(ϵ)

J

j=1

q(ϵ)
j,ms

m
j (t)

28 S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39

= −
2ϵ(k)

√
M

∥q(ϵ,k)
∥

∥ + 2
M

m=1

Eq(ϵ)

J

j=1

q(ϵ)
j,m

λ

(k)
j

M
− smj (t)

≤ −
2ϵ(k)

√
M

∥q(ϵ,k)
∥

∥ + 2JMDmaxs2max + 2
M

m=1

min
rm∈Cm

J
j=1

q(ϵ)
j,m

λ

(k)
j

M
− rmj

. (20)

Eq. (20) is true because of MaxWeight scheduling. Note that in Algorithm 1, the actual service allocated to jobs of type j at
serverm is the same as that of the MaxWeight schedule as long as the corresponding queue length is greater than Dmaxsmax.
This gives the additional 2JMDmaxs2max term.

Assuming all the servers are identical, we have that for eachm, Cm = {λ/M : λ ∈ C}. So, Cm is a scaled version of C. Thus,
λm

= λ/M . Since k ∈ Ko
λ(ϵ) , we also have that k ∈ Ko

λm(ϵ) for the capacity region Cm. Thus, there exists δ(k) > 0 so that

B
(k)
δ(k) , H (k)

∩ {r ∈ RJ
+ : ∥r − λ(k)/M∥ ≤ δ(k)

}

lies strictly within the face of Cm that corresponds to F (k). (Note that this is the only instance in the proof of Proposition 1
that we use the assumption that all the servers are identical.) Call this face F

(k)
m . Thus we have

2
M

m=1

min
rm∈Cm

J
j=1

q(ϵ)
j,m

λ

(k)
j

M
− rmj

≤ 2

M
m=1

 min
rm∈B

(k)
δ(k)

J
j=1

q(ϵ)
j,m

λ

(k)
j

M
− rmj

 (21)

= 2
M

m=1

 min
rm∈B

(k)
δ(k)

J
j=1

q(ϵ)
j,m −

J

j′=1

q(ϵ)

j′,mcj′

cj

λ

(k)
j

M
− rmj

 (22)

= −2δ(k)
M

m=1

 J
j=1

q(ϵ)
j,m −

J

j′=1

q(ϵ)

j′,mcj′

cj

2

(23)

= −2δ(k)
M

m=1

 J
j=1

q(ϵ)
j,m

2
−

J

j′=1

q(ϵ)

j′,mcj′

2

(24)

≤ −2δ(k)

 M
m=1

J
j=1

q(ϵ)
j,m

2
−

M
m=1

J

j′=1

q(ϵ)

j′,mcj′

2

. (25)

Eq. (22) is true because c is a vector perpendicular to the faceF
(k)
m ofCm whereas both λ(k)/M and rm lie on the faceF

(k)
m . So,J

j′=1 q
(ϵ)

j′,mcj′
J

j=1 cj

λ
(k)
j
M − rmj

= 0. The vector q(ϵ)

m =

q(ϵ)
j,m

j
is inRJ . Its component along c ∈ RJ is q(ϵ)

m∥
=

q(ϵ)
m∥

 cj
j

where
q(ϵ)

m∥

 =
J

j=1 q
(ϵ)
j,mcj. Then, the component perpendicular to c is q(ϵ)

m⊥
=

q(ϵ)
j,m −

J
j′=1 q

(ϵ)

j′,mcj′

cj

j
. Thus, the term

in (22) is

j(q
(ϵ)
m⊥

)j

λ
(k)
j
M − rmj

. This is an inner product in RJ which is minimized when rm is chosen to be on the boundary

of B
(k)
δ(k) so that

λ
(k)
j
M − rmj

j
points in the direction opposite to q(ϵ)

m⊥
and the minimum value is −δ(k)

∥q(ϵ)
m⊥

∥. This gives (23).

Eq. (24) can be obtained either by expanding or by using the Pythagorean theorem, viz., ∥q(ϵ)
m⊥

∥
2

= ∥q(ϵ)
m ∥

2
−∥q(ϵ)

m∥
∥
2. Similar

to (19), since (

m
√
xm)2 ≥

m xm, we get (25).

Now substituting (25), (20) and (19) in (14) and (15), we get

E

△ V (q(ϵ))|q(ϵ)(t) = q(ϵ)

− K1 +

2ϵ(k)

√
M

∥q(ϵ,k)
∥

∥

≤ −
2δ
M

 J
j=1

M
m=1

q(ϵ)
j,m

2
−

1
M

J
j=1

M

m=1

q(ϵ)
j,m

2

− 2δ(k)

 M
m=1

J
j=1

q(ϵ)
j,m

2
−

M
m=1

J

j=1

q(ϵ)
j,mcj

2

(26)

S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39 29

(a)
≤ −2δ′

 J
j=1

M
m=1

q(ϵ)
j,m

2
−

1
M

J
j=1

M

m=1

q(ϵ)
j,m

2

+

M
m=1

J
j=1

q(ϵ)
j,m

2
−

M
m=1

J

j=1

q(ϵ)
j,mcj

2

(b)
≤ −2δ′

 J
j=1

M
m=1

q(ϵ)
j,m

2
−

M

m=1

J
j=1

q(ϵ)
j,m

cj
√
M

2

= −2δ′

q(ϵ)
2 −

q(ϵ,k)
∥

2
= −2δ′

q(ϵ,k)
⊥

 (27)

where K1 = K ′
+2JMDmaxs2max and δ′

= min{
δ
M , δ(k)

}. Inequality (a) follows from the fact that (
√
x+

√
y)2 ≥ x+y. Inequality

(b) follows from the following claim, which is proved in Appendix A.

Claim 1.

−
1
M

J
j=1

M

m=1

q(ϵ)
j,m

2

+

M
m=1

J
j=1

q(ϵ)
j,m

2
−

M
m=1

J

j=1

q(ϵ)
j,mcj

2

≥ −
1
M

M

m=1

J
j=1

q(ϵ)
j,mcj

2

.

Now substituting (12) and (27) in (8), we get

E

△ W (k)

⊥
(q(ϵ))|q(ϵ)(t) = q(ϵ)

≤

K1 + K2

2
q(ϵ,k)

⊥

 − δ′

≤
−δ′

2
whenever

W (k)

⊥
(q(ϵ)) ≥

K1 + K2

δ′

.

Moreover, since the departures in each time slot are bounded and the arrivals are finite there is a D < ∞ such that
P (|∆Z(X)| ≤ D) almost surely. Now, applying Lemma 2, we have the following proposition.

Proposition 2. Assume all the servers are identical and the arrival rate λ(ϵ)
∈ interior(C) is such that there exists a λ

(ϵ)
j > δ for

all j for some δ > 0. Then, under JSQ routing and MaxWeight scheduling, for every k ∈ Ko
λ(ϵ) , there exists a set of finite constants

{N (k)
r }r=1,2,... such that E

q(ϵ,k)
⊥

r ≤ N (k)
r for all ϵ > 0 and for each r = 1, 2,

As in [17,18], note that k ∈ Ko
λ(ϵ) is an important assumption here. This is called the ‘Complete Resource Pooling’

assumption and was used in [17,27,28]. If k ∈ K r Ko
λ(ϵ) , i.e., if the arrival rate approaches a corner point of the capacity

region as ϵ(k)
→ 0, then there is no constant δ(k) so that B

(k)
δ(k) lies in the face F (k). In other words, the δ(k) depends on ϵ(k)

and so the bound obtained by Lemma 2 also depends on ϵ(k).

Remark. As stated in Proposition 1, our results hold only for the case of identical servers, which is the most practical
scenario. However, we have written the proofs more generally whenever we can so that it is clear where we need the
identical server assumption. In particular, in this subsection, up to Eq. (20), we do not need this assumption, but we have
used the assumption after that, in analyzing the drift of V (q). The upper bound in the next section is valid more generally if
one can establish state-space collapse for the non-identical server case. However, at this time, this is an open problem.

3.3. Upper bound

In this section, we will obtain an upper bound on the steady state weighted queue length, E

c(k), q(ϵ)

and show that

in the asymptotic limit as ϵ(k)
↓ 0, this coincides with the lower bound.

Noting that the drift of ∆W (k)
∥

is zero in steady state, it can be shown, as in Lemma 8 from [18] that in steady state, for
any c ∈ RJM

+ , we have

E [⟨c, q(t)⟩ ⟨c, s(t) − a(t)⟩] =
E

⟨c, s(t) − a(t)⟩2

2

+
E

⟨c,u(t)⟩2

2

(28)

+ E [⟨c, q(t) + a(t) − s(t)⟩ ⟨c,u(t)⟩] . (29)
We will obtain an upper bound on E

c(k), q(ϵ)

by bounding each of the above terms. Before that, we need the following

definitions and results.
Let π (k) be the steady-state probability that the MaxWeight schedule chosen is from the face F (k), i.e.,

π (k)
= P

⟨c, s(t)⟩ = b(k)

30 S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39

where sj =
M

m=1 s
m
j as defined in (4). Also, define

γ (k)
= min

b(k)

− ⟨c, r⟩ : r ∈ S \ F (k) .

Then noting that in steady state,

E

c(k), s(q)

≥

c(k), λϵ

= b(k)

− ϵ(k),

it can be shown as in Claim 1 in [18] that for any ϵ(k)
∈

0, γ (k)

,

1 − π (k)
≤

ϵ(k)

γ (k)
.

Then, note that

E

b(k)
− ⟨c, s(t)⟩

2
=

1 − π (k)E

b(k)

− ⟨c, s(t)⟩
2

|

⟨c, s(t)⟩ ≠ b(k) ,

≤
ϵ(k)

γ (k)

b(k)2

+ ⟨c, smax1⟩2

. (30)

Define Cm ⊆ RJM
+ as Cm = C1 × · · · × CM . Then, Cm is a convex polygon.

Claim 2. Let qm ∈ RJ
+ for each m ∈ {1, 2, . . . ,M}. Denote q = (qm)Mm=1 ∈ RJM

+ . If, for each m, (sm)∗ is a solution of
maxs∈Cm ⟨qm, s⟩ then s∗ = ((sm)∗)m is a solution of maxs∈Cm ⟨q, s⟩.

Proof. Since s∗ ∈ Cm, ⟨q, s∗⟩ ≤ maxs∈Cm ⟨q, s⟩. Note that maxs∈Cm ⟨q, s⟩ =
M

m=1 maxsm∈Cm ⟨qm, sm⟩. Therefore, if
⟨q, s∗⟩ < maxs∈Cm ⟨q, s⟩, we have

M
m=1

qm, (sm)∗

<
M

m=1 maxsm∈Cm ⟨qm, sm⟩. Then there exists an m ≤ M such that
qm, (sm)∗

< maxsm∈Cm ⟨qm, sm⟩, which is a contradiction. �

Therefore, choosing a MaxWeight schedule at each server is the same as choosing a MaxWeight schedule from the convex
polygon, Cm. Since there are a finite number of feasible schedules, given c(k)

∈ RJM
+ such that ∥c(k)

∥ = 1, there exists an

angle θ (k)
∈ (0, π

2] such that, for all q ∈

q ∈ RJM

+ : ∥q(k)
∥

∥ ≥ ∥q∥ cos

θ (k)

, (i.e., for all q ∈ RJM

+ such that θqq(k)
∥

≤ θ (k)

where θab represents the angle between vectors a and b), we have
c(k), s(t)

I (q(t) = q) = b(k)/

√
MI (q(t) = q) .

We can bound the unused service as follows:

E

c(k),u(t)

≤ E

c(k), s(t) − a(t)

=

1
√
M

E

c(k), s(t)

−

c(k), λϵ

=

1
√
M

E

c(k), s(t)

−

b(k)

− ϵ(k)
≤

ϵ(k)

√
M

(31)

where the last inequality follows from the fact that the MaxWeight schedule lies inside the capacity region and so
E

c(k), s(t)

≤ b(k).

Now, we will bound each of the terms in (29). Let us first consider the left-hand side term in (28). Given that the arrival
rate is λϵ we have

E

c(k), q(t)

c(k), s(t) − a(t)

= E

c(k), q(t)

 b(k)

√
M

−
1

√
M

c(k), λ

− E

c(k), q(t)

 b(k)

√
M

−

c(k), s(t)

=

ϵ(k)

√
M

E

c(k), q(t)

− E

∥q(k)

∥
(t)∥

b(k)

√
M

−

c(k), s(t)

.

Now, we will bound the last term in this equation using the definition of θ (k) as follows:

E

∥q(k)

∥
(t)∥

b(k)

√
M

−

c(k), s(t)

= E

∥q(t)∥ cos

θqq(k)

∥

b(k)

√
M

−

c(k), s(t)

= E

∥q(t)∥ cos

θqq(k)

∥

I

θqq(k)

∥

> θ (k)

×

b(k)

√
M

−

c(k), s(t)

(32)

S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39 31

= E

∥q(k)

⊥
(t)∥ cot

θqq(k)

∥

I

θqq(k)

∥

> θ (k)

×

b(k)

√
M

−

c(k), s(t)

= E

∥q(k)

⊥
(t)∥I

θqq(k)

∥

> θ (k)

b(k)

√
M

−

c(k), s(t)

× cot

θ (k)

≤
1

√
M

E

∥q(k)

⊥
(t)∥

b(k)

−

c(k), s(t)

cot

θ (k) (33)

≤
cot

θ (k)

√
M

E

∥q(k)

⊥
(t)∥2

E

b(k) −

c(k), s(t)

2 (34)

≤
cot

θ (k)

√
M

N (k)

2
ϵ(k)

γ (k)

b(k)
2

+ ⟨c, smax1⟩2

where (32) follows from the definition of θ (k), (33) follows from our choice of c(k) and the definition of s, and (34) follows
from the Cauchy–Schwarz inequality. The last inequality follows from state-space collapse (Proposition 2) and (30). Thus,
we have

E

c(k), q(t)

c(k), s(t) − a(t)

≥

ϵ(k)

√
M

E

c(k), q(t)

−

cot

θ (k)

√
M

N (k)

2
ϵ(k)

γ (k)

b(k)
2

+ ⟨c, smax1⟩2

. (35)

Now, consider the first term in (28). Again, using the fact that the arrival rate is λϵ we have

E

c(k), s(t) − a(t)

2
= E

c(k), a(t)

−

b(k)

√
M

2

+ E

b(k)

√
M

−

c(k), s(t)

2

− 2
ϵ(k)

√
M

E

b(k)

√
M

−

c(k), s(t)

≤ E

 1
√
M

c(k), a(t) − λϵ

+

c(k), λϵ

− b(k)

√
M

2
+ E

b(k)

√
M

−

c(k), s(t)

2

=
1
M

E

c(k), a(t) − λϵ
2

+ 2
ϵ(k)

√
M

E

c(k), a(t) − λϵ

+

ϵ(k)
2

M
+

1
M

E

b(k)
−

c(k), s(t)

2
≤

1
M

c(k)2 , σ 2

+

ϵ(k)
2

M
+

1
M

ϵ(k)

γ (k)

b(k)2

+ ⟨c, smax1⟩2

(36)

=
1

√
M

ζ (ϵ,k)

+
1

√
M

ϵ(k)

γ (k)

b(k)2

+ ⟨c, smax1⟩2

(37)

where ζ (ϵ,k) was earlier defined as ζ (ϵ,k)
=

ϵ(k)

2
√
M

+
1

√
M

c(k)
2

,

σ (ϵ)

2. Eq. (36) is obtained by noting that E [a(t)] = λϵ

and so E

c(k), a(t) − λϵ
2

= var

c(k), a(t) − λϵ

=

c(k), var(a(t) − λϵ)

.

Consider the second term in (28):

E

c(k),u(t)

2
≤

c(k), 1smax

E

c(k),u(t)

≤

ϵ(k)

√
M

c(k), 1smax

(38)

where the last inequality follows from (31).
Now, we consider the term in (29). We need some definitions so that we can only consider the non-zero components of

c. Let L
(k)
++ =

j ∈ {1, 2, . . . , J} : c(k)

j > 0

. Definec(k)

=

c(k)
jm

j∈L

(k)
++

,q =

qjm

j∈L

(k)
++

andu =

ujm

j∈L

(k)
++

. Also define, the

projections,q(k)
∥

=
c(k),qc(k) andq(k)

⊥
=q −q(k)

∥
. Similarly, defineu(k)

∥
andu(k)

⊥
. Then, we have

E

c(k), q(t) + a(t) − s(t)

c(k),u(t)

= E

c(k), q(t + 1)

c(k),u(t)

− E

c(k),u(t)

2
≤ E

c(k), q(t + 1)

c(k),u(t)

= E

c(k),q(t + 1)
 c(k),u(t)

32 S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39

= E

∥q(k)

∥
(t + 1)∥∥u(k)

∥
∥

= E

q(k)
∥

(t + 1),u(k)
∥

(t)

= E
q(k)

∥
(t + 1),u(t)

= E [⟨q(t + 1),u(t)⟩] + E

−q(k)

⊥
(t + 1),u(t)

≤ E [⟨Dmaxsmax1,u(t)⟩] +

E

∥q(k)

⊥
(t + 1)∥2

E

∥u(t)∥2

(39)

≤ DmaxsmaxE [⟨1,u(t)⟩] +

N (k)

2 E [⟨u(t),u(t)⟩] (40)

≤ DmaxsmaxE [⟨1,u(t)⟩] +

N (k)

2 smaxE [⟨1,u(t)⟩]

where (39) follows from (3) and from the Cauchy–Schwarz inequality. Eq. (40) follows from state-space collapse
(Proposition 2), since E

∥q(k)

⊥
∥
2

≤ E

∥q(k)

⊥
∥
2

≤ N (k)
2 .

Note that

E [⟨1,u(t)⟩] ≤
1

c(k)
min

E
c(k),u(t)

=

1

c(k)
min

E

c(k),u(t)

≤

ϵ(k)

√
M

where c(k)
min

∆
=minj∈L

(k)
++

c(k)
j > 0 and the last inequality follows from (31). Thus, we have

E

c(k), q(t) + s(t) − a(t)

c(k),u(t)

≤ Dmaxsmax

ϵ(k)

√
M

+

N (k)

2 smax
ϵ(k)
√
M

. (41)

Now, substituting (35), (37), (38) and (41) in (29), we get

ϵ(k)E

c(k), q(t)

≤

ζ (ϵ,k)

2
+ B(ϵ,k)

2

where

B(ϵ,k)
2 =

1

2
√
M

ϵ(k)

γ (k)

b(k)2

+ ⟨c, smax1⟩2

+ Dmaxsmaxϵ
(k)

+
ϵ(k)

2

c(k), 1smax

+

√
MN (k)

2 smaxϵ(k) + cot

θ (k)N (k)

2
ϵ(k)

γ (k)

b(k)
2

+ ⟨c, smax1⟩2

.

Thus, in the heavy traffic limit as ϵ(k)
↓ 0, we have that

lim
ϵ(k)↓0

ϵ(k)E

c(k), q(ϵ)

≤

ζ (k)

2
(42)

where ζ (k) was defined as ζ (k)
=

1
√
M

c(k)
2

, (σ)2

. Thus, (7) and (42) establish the first-moment heavy-traffic optimality

of JSQ routing and MaxWeight scheduling policy. The proof of Proposition 1 is now complete. In the following sections, we
will study other routing algorithms that are easier to implement than JSQ.

3.4. Power-of-two-choices routing and MaxWeight scheduling

JSQ routing needs complete queue length information at the router. In practice, this communication overhead can be
considerable when the number of servers is large. An alternate simpler algorithm is the power-of-two-choices routing
algorithm.

In this subsection, we will consider the power-of-two-choices routing algorithm with the MaxWeight scheduling
algorithm for the cloud resource allocation problem. In the power-of-two-choices routing algorithm, in each time slot t ,

S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39 33

for each type of jobm, two serversmj
1(t) andmj

2(t) are chosen uniformly at random. All the typem job arrivals in this time
slot are then routed to the server with the shorter queue length among these two, i.e.,m∗

j (t) = argminm∈{mj
1(t),m

j
2(t)}

qj,m(t).
Then, we have that the cloud computing system is heavy traffic optimal. In other words, we have the following result.

Theorem 1. Proposition 1 holds when power-of-two-choices routing is used instead of JSQ routing.

The proof of this theorem is similar to that of Proposition 1 and the details are in Appendix B.

4. Power-of-two-choices routing

In this section, we consider the power-of-two-choices routing algorithm, without any scheduling. This is a special case
of the model considered in the previous section when all the jobs are of the same type and each server can serve only one
job at a time. In this case, there is a single queue at each server and no scheduling is needed.

Note on Notation: In this section, since J = 1 here, we just denote all vectors (in RM) in bold font x.
The result from the previous section is not applicable here because of the following reason. In Proposition 1, a sequence

of systems with the arrival rate approaching a face of the capacity region, along its normal vector were considered. The
normal vector of the face plays an important role in the state-space collapse, and so the upper bound obtained is in terms of
this normal. So, this result cannot be applied if the arrival rates were approaching a corner point where there is no common
normal vector. In particular, the proof of state-space collapse in Section 3.2 is not applicable here because one cannot define
a ball B(k)

δ(k) as in (21) at a corner point.

4.1. System model

There are M servers, and jobs arrive into the system to be served. Unlike the cloud model, here, each server can serve
only one job at a time and each job needs service for certain amount of time. On arrival, the jobs are routed to one of the
servers by a routing algorithm and are queued there. The servers serve the jobs in the queue according to first come first
serve (FCFS) service discipline. Since there is only queue at each server (and only one job type), FCFS service discipline is
non-preemptive.

Let A(t) denote the set of jobs that arrive at the beginning of time slot t . Let Dk be the size of kth job. We define
a(t) =

k∈A(t) Dk to be the overall size of the jobs in A(t) or the total time slots requested by the jobs. We assume that

a(t) is a stochastic process which is i.i.d. across time slots, E[a(t)] = λ and Pr(a(t) = 0) > ϵa for some ϵa > 0 for all t . Let
σ 2

= var[a(t)]. Let am(t) denote the arrivals to serverm at time t after routing.
Let µ be the amount of service available in each time slot at each server. Not all of this service may be used either

because the queue is empty or because different chunks of the same job cannot be served simultaneously. Let sm(t) be
the actual amount of service scheduled available in time slot t at server m. Let um(t) denote the unused service which is
defined as um(t) = µ − sm(t). Let qm(t) denote the queue length at server m at time t , and let q(t) denote the vector
(q1(t), q2(t), . . . , qM(t)). Then, we have

qm(t + 1) = qm(t) + am(t) − µ + um(t).

Note that

um(t) = 0 whenever qm(t) + am(t) ≥ Dmaxµ. (43)

In this subsection, we will prove the following proposition using a procedure similar to the one in Section 3.

Proposition 3. Consider the routing or load balancing system described above. Let the exogenous arrival rate λ(ϵ) be such that
ϵ = Mµ − λ(ϵ) and the standard deviation of the arrival vector be σ (ϵ)

∈ R+. Let q(ϵ)(t) be the corresponding queue length
vector. Then the steady state queue length satisfies

E

m

q(ϵ)

≤

σ (ϵ)

2
+ ϵ2

2ϵ
+ B(ϵ)

2

where B(ϵ)
2 is o(1

ϵ(k)).
In the heavy traffic limit as ϵ ↓ 0, this bound is tight, i.e.,

lim
ϵ↓0

ϵE

m

q(ϵ)

=

σ 2

2
.

We again follow the three step procedure used in the previous section to show heavy traffic optimality. Since the power-
of-two-choices algorithm tries to equalize any two randomly chosen queues, we expect that there is a state-space collapse
along the direction where all queues are equal, similar to the JSQ algorithm.

34 S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39

Let c1 =
1

√
M

(1, 1, . . . , 1) be the unit vector in RM along which we expect state-space collapse. Let 1 denote the vector
(1, 1, . . . , 1). For any Q ∈ RM , define Q∥ to be the component of Q along c1, i.e., Q∥ = ⟨Q, c1⟩ c1 where ⟨., .⟩ denotes the
canonical dot product. Thus, Q∥ =

m Qm
M 1. Define Q⊥ to be the component of Q perpendicular to Q∥, i.e., Q⊥ = Q − Q∥.

Define the Lyapunov functions V∥(Q) = ∥Q∥∥
2

=
(

m Qm)
2

M andW⊥(Q) = ∥Q⊥∥ =

m Q 2

m −
(

m Qm)
2

M

 1
2

.

We also need the following definitions tomathematically express the power-of-two-choices routing. Let X(t) denote the
servers chosen at time slot t . So,X(t) can take one ofMC2 values of the form (m,m′)wherem,m′

∈ Z+ and 1 ≤ m < m′
≤ M .

Here MC2 denotes the number of 2-combinations in a set of sizeM . Note that X(t) is an i.i.d. random process with a uniform
distribution over all possible values. Define MC2 different arrival processes denoted by am,m′(t) with 1 ≤ m < m′

≤ M as
follows. If x(t) = (m̂, m̂′), then

am,m′(t) =

a(t) form = m̂ and m′

= m̂′

0 otherwise.

Thus, {am,m′(t)} can be thought of as a set of correlated arrival processes. They are correlated so that only one of them can
have a non-zero value at each time. Let λm,m′ = E[am,m′(t)]. Then λm,m′ =

λ
MC2

. The arrivals in am,m′(t) can be routed only
to either server m or server m′. According to the power-of-two-choices algorithm, all the jobs are then routed to the server
with smallest queue amongm and m′. Ties are broken at random.

4.2. Lower bound

Consider an arrival process with arrival rate λ(ϵ) such that ϵ = Mµ − λ(ϵ). Let q(ϵ)(t) denote the corresponding queue
length vector. Since the system is stabilizable, there exists a steady state distribution of q(ϵ)(t). Again, lower bounding
(

m q(ϵ)) by a single queue length as in Section 3.1, we have

E

m

q(ϵ)

≥

σ (ϵ)

2
+ ϵ2

2ϵ
− B1

where B1 =
Msmax

2 . Thus, in the heavy traffic limit we have

lim inf
ϵ→0

ϵE

m

q(ϵ)

≥

σ 2

2
. (44)

4.3. State-space collapse

For simplicity of notation, in this subsection, wewrite q for q(ϵ). Wewill bound the drift of the Lyapunov functionW⊥(Q),
and again use Lemma 2 to obtain state-space collapse. We again use (8) with c1 instead of c(k) to get the drift of W (k)

⊥
(q) in

terms of drifts of V (q) and V (k)
∥

(q).
Let us first consider the last term:

E

△ V∥(q)|q(t) = q

= E

V∥(q(t + 1)) − V∥(q(t))|q(t) = q

=

1
M

E

m

qm(t + 1)

2

−

m

qm(t)

2

|q(t) = q

=

1
M

E

m

qm(t) + am(t) − µ +

m

um(t)

2

−

m

qm(t)

2

|q(t) = q

=

1
M

E

m

qm(t) + am(t) − µ

2

+

m

um(t)

2

+ 2

m

qm(t) + am(t) − µ

m

um(t)

−

m

qm(t)

2

|q(t) = q

≥

1
M

E

m

am(t) − µ

2

+ 2

m

qm(t)

m

am(t) − µ

− 2Mµ

m

um(t)

|q(t) = q

S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39 35

≥
2
M

m

qm

E

m

am(t) − µ

|q(t) = q

− 2µE

m

um(t)|q(t) = q

≥ −K3 + 2

m

qm

λ

M
− µ

≥ −K3 − 2
ϵ

M

m

qm

(45)

where K3 = 2Mµ2 is obtained by bounding sm(t) and um(t) by smax.
Now, we will bound the first term in (8). Expanding [△ V (q)|q(t)] and using (43), it is easy to see that

E [△ V (q)|q(t) = q] ≤ K4 − 2µ

m

qm(t) + EXE

m

2qm(t)am(t)|q(t) = q, X(t) = (i, j)

(46)

= K4 − 2µ

m

qm(t) +

(i,j):i<j

1
MC2

E [a(t)] 2min{qi(t), qj(t)}

where K4 = M(2µ2(Dmax+1)+σ 2
+λ2). Note that 2min{qi(t), qj(t)} ≤ qi(t)+qj(t) for all i, j and 2min{qmin(t), qmax(t)} =

(qmin(t) + qmax(t)) − (qmax(t) − qmin(t)). Using these two relations, we get

(i,j):i<j 2min{qi(t), qj(t)} ≤

(i,j):i<j(qi(t) +

qj(t)) − (qmax(t) − qmin(t)). Then, we have

E [△ V (q)|q(t) = q] ≤K4 − 2µ

m

qm(t) −
λ

MC2
(qmax − qmin) +

2λ
M

m

qm(t).

=K4 − 2
ϵ

M

m

qm(t) −
λ

MC2
(qmax − qmin).

Note that

∥q⊥∥ =

m

qm −

m

qm

M

2

≤

M (qmax − qmin)

2

=
√
M (qmax − qmin) .

Thus, we have

E [△ V (q)|q(t) = q] ≤ K4 − 2
ϵ

M

m

qm(t) −
λ

MC2

∥q⊥∥
√
M

.

Substituting this and (45) in (8), we have

E [△ W⊥(q)] ≤
K3 + K4

2∥q⊥∥
−

λ

MC2

1

2
√
M

.

This means that we have negative drift for sufficiently largeW⊥(q) = ∥q⊥∥. Since the drift ofW⊥(q) is uniformly bounded
with probability 1, using Lemma 2, there exist finite constants {N ′

r}r=1,2,... such that E

∥q(ϵ)

⊥
∥
r

≤ N ′
r for each r = 1, 2,

4.4. Upper bound

The upper bound is again obtained by bounding each of the terms in (29). This is identical to the case of JSQ routing
(Proposition 3 in [18]). So, we will not repeat the proof here, but just state the upper bound:

E

m

q(ϵ)

≤

σ (ϵ)

2
+ ϵ2

2ϵ
+ B(ϵ)

2

where B(ϵ)
2 = M

N ′
2smax
ϵ

+
smax
2 . Thus, in heavy traffic limit, we have

lim inf
ϵ→0

ϵE

m

q(ϵ)

≤

σ 2

2
.

36 S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39

This coincides with the heavy-traffic lower bound in (44). This establishes the first-moment heavy-traffic optimality of the
power-of-two choices routing algorithm.

5. Conclusions

We considered a stochastic model for load balancing and scheduling in cloud computing clusters. We studied the
performance of JSQ routing andMaxWeight scheduling policy under this model. It was known that this policy is throughput
optimal. We have shown that it is heavy traffic optimal when all the servers are identical. We also found that using the
power-of-two-choices routing instead of JSQ routing is also heavy traffic optimal.

We then considered a simpler setting where the jobs are of the same type, so only load balancing is needed. It has been
established by others using diffusion limit arguments that the power-of-two-choices algorithm is heavy traffic optimal. We
presented a steady-state version of this result here using Lyapunov drift arguments.

Acknowledgments

Researchwas funded in part by AROMURIsW911NF-08-1-0233 andW911NF-12-1-0385 andNSF Grants ECCS-1255425,
CNS-1261429 and ECCS-1202065.

Appendix A. Proof of Claim 1

Let j ≠ j′ and m ≠ m′. Then, clearly,

0 ≤

(q(ϵ)

j,m − q(ϵ)

j,m′)cj′

−

(q(ϵ)

j′,m − q(ϵ)

j′,m′)cj
2

j<j′

2(q(ϵ)
j,m − q(ϵ)

j,m′)cj′(q
(ϵ)

j′,m − q(ϵ)

j′,m′)cj ≤

j<j′

(q(ϵ)

j,m − q(ϵ)

j,m′)cj′
2

+

(q(ϵ)

j′,m − q(ϵ)

j′,m′)cj
2

(A.1)

J
j=1

J
j′=1

(q(ϵ)
j,m − q(ϵ)

j,m′)cj(q
(ϵ)

j′,m − q(ϵ)

j′,m′)cj′ ≤

J
j=1

J
j′=1

(q(ϵ)
j,m − q(ϵ)

j,m′)
2(cj′)2 (A.2)

J
j=1

(q(ϵ)

j,m − q(ϵ)

j,m′)cj
2

≤

J

j=1

(q(ϵ)
j,m − q(ϵ)

j,m′)
2

J

j′=1

(cj′)2.

The left-hand sides of (A.1) and (A.2) are equal because of the following reason. The two sums in the LHS of (A.2) can be split
into three cases, viz., j = j′, j < j′ and j > j′. The term corresponding to j = j′ is zero. The other two cases correspond to the
same term which gives the factor 2 in (A.1). Considering the three cases, it can be shown that the right-hand sides of (A.1)
and (A.2) are equal. Noting that

J
j′=1(cj′)

2
= 1 and summing overm,m′ such thatm < m′, we get

m<m′

 J
j=1

(q(ϵ)
j,m − q(ϵ)

j,m′)cj

2
 ≤

m<m′

J

j=1

q(ϵ)
j,m − q(ϵ)

j,m′

2
(A.3)

M
m=1

M
m′=1

J

j=1

q(ϵ)
j,mcj

J

j=1

(q(ϵ)
j,m − q(ϵ)

j,m′)cj

≤

M
m=1

M
m′=1

J

j=1

q(ϵ)
j,m

q(ϵ)
j,m − q(ϵ)

j,m′

. (A.4)

The left-hand side of (A.4) is obtained using the same method as in (A.2) as follows. The two sums in the LHS of (A.4) can be
split into three cases, viz.,m = m′,m < m′ andm > m′. The term corresponding tom = m′ is zero. The other two cases can
be combined to get

m<m′

J

j=1

q(ϵ)
j,mcj

J

j=1

(q(ϵ)
j,m − q(ϵ)

j,m′)cj

+

J

j=1

q(ϵ)

j,m′cj

J

j=1

(q(ϵ)

j,m′ − q(ϵ)
j,m)cj

which is the same as the term in the left-hand side of (A.3). Similarly, the right-hand side term can be obtained. Expanding
the products in (A.4), we get

M
m=1

M
m′=1

J

j=1

q(ϵ)
j,mcj

2

−

M
m=1

M
m′=1

J

j=1

q(ϵ)
j,mcj

J

j=1

q(ϵ)

j,m′cj

≤

J
j=1

M

m=1

M
m′=1

q(ϵ)
j,m

2
−

M
m=1

M
m′=1

q(ϵ)
j,mq

(ϵ)

j,m′

M
M

m=1

J

j=1

q(ϵ)
j,mcj

2

−

M

m=1

J
j=1

q(ϵ)
j,mcj

2

≤ M
J

j=1

M
m=1

q(ϵ)
j,m

2
−

J
j=1

M

m=1

q(ϵ)
j,m

2

.

The claim is now proved.

S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39 37

Appendix B. Outline of the proof of Theorem 1

We will use the same Lyapunov functions defined in the proof of Proposition 1. We will first bound the drift of the
Lyapunov function V (.). Note that the bound (13) on the drift of V (.) is valid:

E

△ V (q(ϵ))|q(ϵ)(t) = q(ϵ)

≤ K ′

+ Eq(ϵ)

M

m=1

J
j=1

2q(ϵ)

j,m

aj,m(t) − smj (t)

. (B.1)

The arrival term here can be bounded as follows, similar to the arrival term in (46) in Section 4. Let Xj = (m1j,m2j) denote
the two servers randomly chosen by power-of-two-choices algorithms for routing of type j jobs:

Eq(ϵ)

J

j=1

M
m=1

2q(ϵ)

j,m

aj,m(t)

= E

E

J

j=1

M
m=1

2q(ϵ)

j,m

aj,m(t)

 q(t) = q(ϵ), Xj = (m1j,m2j)

 q(t) = q(ϵ)

(a)
= E

 J
j=1

(m1j,m2j):m1j<m2j

1
MC2

2aj(t)min{q(ϵ)
j,m1j

, q(ϵ)
j,m2j

}|q(t) = q(ϵ)

=

J
j=1

λj
1

MC2

(m1j,m2j):m1j<m2j

2min{q(ϵ)
j,m1j

, q(ϵ)
j,m2j

}

(b)
≤

J
j=1

λj
1

MC2

(m1j,m2j):m1j<m2j

q(ϵ)
j,m1j

+ q(ϵ)
j,m2j

− (q(ϵ)
j,max − q(ϵ)

j,min)

=

J
j=1

λj

m

2q(ϵ)
j,m

M
−

1
MC2

(q(ϵ)
j,max − q(ϵ)

j,min)

where q(ϵ)

j,max = maxm q(ϵ)
j,m and q(ϵ)

j,min = minm q(ϵ)
j,m. Equation (a) follows from the definition of power-of-two-choices

routing and (b) follows from the fact that 2min{q(ϵ)
j,m1j

, q(ϵ)
j,m2j

} ≤ q(ϵ)
j,m1j

+ q(ϵ)
j,m2j

for all m1j and m1j and 2min{q(ϵ)
j,max, q

(ϵ)
j,min} ≤

(q(ϵ)
j,max + q(ϵ)

j,min) − (q(ϵ)
j,max − q(ϵ)

j,min). Then, from (B.1), we have

E

△ V (q(ϵ))|q(ϵ)

= q(ϵ)

≤ K ′
−

J
j=1

λj
1

MC2
(q(ϵ)

j,max − q(ϵ)
j,min) (B.2)

+ 2
J

j=1

λj

m

q(ϵ)
j,m

M
− 2Eq(ϵ)

M

m=1

J
j=1

2q(ϵ)
j,ms

m
j (t)

. (B.3)

Now, we will bound the term in (B.2). As in Section 3.2, we will assume that the arrival rate λ(ϵ) is such that there exists a
δ > 0 such that λ

(ϵ)
j > δ for all j:

−

J
j=1

λj
1

MC2
(q(ϵ)

j,max − q(ϵ)
j,min) = −

J
j=1

λj
1

MC2
√
M

M

q(ϵ)
j,max − q(ϵ)

j,min

2

≤ −

J
j=1

λj
1

MC2
√
M

 M
m=1

q(ϵ)
j,m −

m′

q(ϵ)

j,m′

M

2

≤ −
2
M

J
j=1

δ′′

 M
m=1

q(ϵ)
j,m −

m′

q(ϵ)

j,m′

M

2

where δ′′
=

δ

(M−1)
√
M
. This term is the same as the term in (18) with δ′′ instead of δ. This term can then be bound by the term

in (19). Noting that the terms in (B.3) are identical to those in (15), we can bound them using (20) and (25) as in Section 3.2.

38 S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39

Then, we get

E

△ V (q(ϵ))|q(ϵ)

= q(ϵ)

≤ K ′
+ 2JMDmaxs2max −

2ϵ(k)

√
M

∥q(ϵ,k)
∥

∥ −
2
M

J
j=1

δ′′

 M
m=1

q(ϵ)
j,m −

m′

q(ϵ)

j,m′

M

2

− 2δ(k)

 M
m=1

J
j=1

q(ϵ)
j,m

2
−

M
m=1

J

j′=1

q(ϵ)

j′,mcj′

2

. (B.4)

This equation is now identical to (26) with δ′′ instead of δ. Note that the remainder of the proof of state-space collapse
in Section 3.2 is independent of the routing policy and is valid when δ is replaced with δ′′. Moreover, the proofs of lower
bound in Section 3.1 and upper bound in Section 3.3 are also valid here. Thus, once we have the above relation, the proof of
heavy traffic optimality of this policy is identical to that of JSQ routing and MaxWeight scheduling policy and so the proof
of Theorem 1 is complete.

References

[1] EC2, http://aws.amazon.com/ec2/.
[2] AppEngine, http://code.google.com/appengine/.
[3] Azure, http://www.microsoft.com/windowsazure/.
[4] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing 360-degree compared, in: Grid Computing Environments Workshop, 2008.

GCE’08, 2008, pp. 1–10.
[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. Above the clouds: A Berkeley view of

cloud computing. Tech. Rep. UCB/eeCs-2009-28, EECS Department, U.C. Berkeley.
[6] D.A. Menasce, P. Ngo, Understanding cloud computing: Experimentation and capacity planning, in: Proc. 2009 Computer Measurement Group Conf.,

2009.
[7] S.T. Maguluri, R. Srikant, L. Ying, Stochastic models of load balancing and scheduling in cloud computing clusters, in: Proc. IEEE Infocom., 2012,

pp. 702–710.
[8] S.T. Maguluri, R. Srikant, Scheduling jobs with unknown duration in clouds, in: INFOCOM, 2013 Proceedings IEEE, 2013, pp. 1887–1895.
[9] S.T. Maguluri, R. Srikant, Scheduling jobs with unknown duration in clouds, IEEE/ACM Trans. Netw. (2014) in press. Available online at

https://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6672027.
[10] L. Tassiulas, A. Ephremides, Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio

networks, IEEE Trans. Automat. Control 4 (1992) 1936–1948.
[11] M. Bramson, State space collapsewith application to heavy-traffic limits formulticlass queueing networks, Queueing Syst. TheoryAppl. (1998) 89–148.
[12] R.J. Williams, Diffusion approximations for open multiclass queueing networks: Sufficient conditions involving state space collapse, Queueing Syst.

Theory Appl. (1998) 27–88.
[13] M.I. Reiman, Some diffusion approximations with state space collapse, in: Proceedings of International Seminar on Modelling and Performance

Evaluation Methodology, in: Lecture Notes in Control and Information Sciences, Springer, Berlin, 1983, pp. 209–240.
[14] J.M. Harrison, Heavy traffic analysis of a system with parallel servers: Asymptotic optimality of discrete review policies, Ann. Appl. Probab. (1998)

822–848.
[15] J.M. Harrison, M.J. Lopez, Heavy traffic resource pooling in parallel-server systems, Queueing Syst. (1999) 339–368.
[16] S.L. Bell, R.J. Williams, Dynamic scheduling of a parallel server system in heavy traffic with complete resource pooling: asymptotic optimality of a

threshold policy, Electron. J. Probab. (2005) 1044–1115.
[17] A. Stolyar, MaxWeight scheduling in a generalized switch: State space collapse and workload minimization in heavy traffic, Adv. Appl. Prob. 14 (1)

(2004) 1–53.
[18] A. Eryilmaz, R. Srikant, Asymptotically tight steady-state queue length bounds implied by drift conditions, Queueing Syst. (2012) 1–49.
[19] J.F.C. Kingman, Some inequalities for the queue GI/G/1, Biometrika (1962) 315–324.
[20] M. Mitzenmacher, The power of two choices in randomized load balancing (Ph.D. thesis), University of California at Berkeley, 1996.
[21] M. Bramson, Y. Lu, B. Prabhakar, Randomized load balancing with general service time distributions, in: Proceedings of the ACM SIGMETRICS

International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS’10, ACM, New York, NY, USA, 2010, pp. 275–286.
[22] H. Chen, H.Q. Ye, Asymptotic optimality of balanced routing, http://myweb.polyu.edu.hk/~lgtyehq/papers/ChenYe11OR.pdf, 2010.
[23] Y.T. He, D.G. Down, Limited choice and locality considerations for load balancing, Perform. Eval. 65 (9) (2008) 670–687.
[24] N.D. Vvedenskaya, R.L. Dobrushin, F.I. Karpelevich, Queueing systemwith selection of the shortest of two queues: An asymptotic approach, Probl. Inf.

Transm. 32 (1) (1996) 15–27.
[25] S.T. Maguluri, R. Srikant, L. Ying, Heavy traffic optimal resource allocation algorithms for cloud computing clusters, in: International Teletraffic

Congress, 2012, pp. 1–8.
[26] B. Hajek, Hitting-time and occupation-time bounds implied by drift analysis with applications, Adv. Appl. Probab. (1982) 502–525.
[27] A. Mandelbaum, A.L. Stolyar, Scheduling flexible servers with convex delay costs: heavy-traffic optimality of the generalized cµ-rule, Oper. Res. 52

(6) (2004) 836–855.
[28] H.Q. Ye, D.D. Yao, Utility-maximizing resource control: Diffusion limit and asymptotic optimality for a two-bottleneck model, Oper. Res. 58 (3) (2010)

613–623.

Siva Theja Maguluri received his B.Tech. in Electrical Engineering from the Indian Institute of Technology Madras in 2008 and his
M.S. in Electrical and Computer Engineering from the University of Illinois at Urbana–Champaign in 2011. He is currently a Ph.D.
candidate at the Department of Electrical and Computer Engineering and a Research Assistant in the Coordinated Science Lab at
UIUC. His research interests include cloud computing, queueing theory, game theory, stochastic processes and communication
networks.

http://aws.amazon.com/ec2/
http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/
https://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp%3D%26arnumber%3D6672027
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref10
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref11
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref12
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref13
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref14
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref15
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref16
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref17
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref18
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref19
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref20
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref21
http://myweb.polyu.edu.hk/~lgtyehq/papers/ChenYe11OR.pdf
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref23
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref24
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref26
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref27
http://refhub.elsevier.com/S0166-5316(14)00097-2/sbref28

S.T. Maguluri et al. / Performance Evaluation 81 (2014) 20–39 39

R. Srikant received his B.Tech. from the Indian Institute of Technology, Madras in 1985, his M.S. and Ph.D. from the University of
Illinois in 1988 and 1991, respectively, all in Electrical Engineering. He was a Member of Technical Staff at AT&T Bell Laboratories
from 1991 to 1995. He is currently with the University of Illinois at Urbana–Champaign, where he is the Fredric G. and Elizabeth H.
Nearing Professor in the Department of Electrical and Computer Engineering, and a Research Professor in the Coordinated Science
Lab.

He was an associate editor of Automatica, the IEEE Transactions on Automatic Control, the IEEE/ACM Transactions on
Networking, and the Journal of the ACM. He has also served on the editorial boards of special issues of the IEEE Journal on
Selected Areas in Communications and IEEE Transactions on Information Theory. He was the chair of the 2002 IEEE Computer
Communications Workshop in Santa Fe, NM and a program co-chair of IEEE INFOCOM, 2007.

He is currently the Editor-in-Chief of the IEEE/ACM Transactions on Networking. He was a Distinguished Lecturer for the IEEE
Communications Society for 2011–12. His research interests include communication networks, stochastic processes, queueing

theory, information theory and game theory.

Lei Ying received his B.E. degree from Tsinghua University, Beijing, China, and his M.S. and Ph.D. in Electrical and Computer
Engineering from the University of Illinois at Urbana–Champaign. Currently he is an Associate Professor at the School of
Electrical, Computer and Energy Engineering at Arizona State University and an Associate Editor of the IEEE/ACM Transactions
on Networking.

His research interest is broadly in the area of stochastic networks, including big data and cloud computing, cyber security, P2P
networks, social networks and wireless networks.

He won the Young Investigator Award from the Defense Threat Reduction Agency (DTRA) in 2009 and NSF CAREER Award in
2010. He was the Northrop Grumman Assistant Professor in the Department of Electrical and Computer Engineering at Iowa State
University from 2010 to 2012.

	Heavy traffic optimal resource allocation algorithms for cloud computing clusters
	Introduction
	System model and algorithm
	JSQ routing and MaxWeight scheduling
	Lower bound
	State-space collapse
	Upper bound
	Power-of-two-choices routing and MaxWeight scheduling

	Power-of-two-choices routing
	System model
	Lower bound
	State-space collapse
	Upper bound

	Conclusions
	Acknowledgments
	Proof of Claim 1
	Outline of the proof of Theorem 1
	References

