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Abstract— In this work, we study the control of communication
networks in the presence of both inelastic and elastic traffic
flows. The characteristics of these two types of traffic differ
significantly. Hence, earlier approaches that focus on homo-
geneous scenarios with a single traffic type are not directly
applicable. We formulate a new network optimization problem
that incorporates the performance requirements of inelastic and
elastic traffic flows. The solution of this problem provides us with
a new queueing architecture, and distributed load balancing and
congestion control algorithm with provably optimal performance.
In particular, we show that our algorithm achieves the dual goal
of maximizing the aggregate utility gained by the elastic flows
while satisfying the demands of inelastic flows. Our base optimal
algorithm is extended to provide better delay performance for
both types of traffic with minimal degradation in throughput. It is
also extended to the practically relevant case of dynamic arrivals
and departures. Our solution allows for a controlled interaction
between the performance of inelastic and elastic traffic flows.
This performance can be tuned to achieve the appropriate design
tradeoff. The network performance is studied both theoretically
and through extensive simulations.

I. INTRODUCTION

Over the last several years, we have witnessed the devel-
opment of increasingly sophisticated optimization and control
techniques to address a variety of resource allocation problems
for communication networks (e.g. [2], [11], [19], [1], [10],
[15], [23], [6], [21], [26], [13], [7], see [17], [8] for an
overview). Much of this investigation has focused primarily
on controllable or elastic traffic. However, networks are seeing
a major growth in real-time traffic (voice and video), which
is expected to consume an increasing fraction of the network
services. This “inelastic” traffic does not lend itself to feedback
control because of real-time constraints and its rate cannot be
modulated without sacrificing quality. Thus, it is imperative
that one develop efficient resource allocation strategies to
jointly manage both inelastic and elastic traffic. Integration of
elastic and inelastic flows in single-hop wireless systems has
been studied [24], [3], [22], and in [9] it has been extended
to a multiple-hop network, however with the restriction of
every flow having a single route. The availability of multiple
routes, which is studied in this paper, significantly changes
the structure of the solution, and forces us to develop a
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joint congestion control and load balancing mechanism that
is fully distributed, and achieves high throughput and good
delay characteristics.

Our goal is to balance the load of the inelastic traffic in
the network such that the elastic traffic intelligently exploits
the time varying residual capacity (the link capacity minus the
capacity needed to serve the inelastic flows) at each link in
the network. To see the potential gains of such an interaction,
consider the network shown in Figure 1, which serves one
inelastic and one elastic flow over links of capacity 20. Assume
that the inelastic flow has a fixed rate of 20 and has two routes
to divide its traffic over as shown in the figure. It can be seen
that the rate distribution decision of the inelastic flow will
significantly affect the elastic flow performance. If it divides
its traffic equally amongst the two routes as in Figure 1, the
elastic flow cannot achieve a rate more than 10. However,
if the inelastic flow can steer more of its traffic over the
less congested route, more resources become available to the
elastic traffic and it can achieve rates close to 20 as shown
in Figure 2. With this intuition, we want to design a dynamic
algorithm that automatically adapts the operation of inelastic
and elastic flows to get the optimal performance. This requires
a solution that seamlessly and distributively balances the load
of the inelastic traffic across the network as well as injects
enough elastic traffic into the network so that no capacity is
wasted while preventing network overloading.

Fig. 1. Fixed Inelastic Traffic Fig. 2. Controllable Inelastic Traffic

We begin first by providing the system model and general
assumptions. We then formulate a problem that attempts to
maximize the utility of the elastic flows in the network subject
to the constraint that the data requirements of the inelastic
flows are met. We solve this problem via a two-step approach.
First, we solve a simple version of the problem when the
inelastic flow rates are deterministic. We then use the insights
gained from that framework and extend the solution to the
more general stochastic case. We then extend the work in two



practically important directions. The first is to develop a virtual
queue based solution that allows us to achieve low delays
with a nominal and controllable sacrifice in the throughput of
the elastic flows. The second is to extend the solution in the
presence of flow arrivals and departures, where certain elastic
flows may be very short and may leave the system before the
algorithm has the opportunity to converge.

We also present extensive simulations to demonstrate the
interaction between the two types of flows under our proposed
algorithms. In particular, we show that due to the dynamic na-
ture of the load balancing mechanism implemented by inelastic
sources, the elastic flows are able to push inelastic traffic onto
less loaded routes and achieve higher rates. We show that this
interaction maximizes the sum of the utilities of the elastic
flows while satisfying the demands of the inelastic flows. We
also compare the delay performance of our algorithm with and
without the virtual queue implementation and illustrate that
the virtual queue scheme can reduce the end-to-end delays
significantly.

II. SYSTEM MODEL AND OBJECTIVES

We consider a fixed network represented by a graph G =
(N ,L), whereN is the set of nodes and L is the set of directed
links. We assume that the capacity of link l ∈ L is cl, and
define the vector of link capacities as c := (cl)l∈L. Time is
slotted in our system and the external packets arrive at the
beginning of each time slot.

We consider the scenario where the network resources are
shared by a set of inelastic and elastic flows, where a flow
is defined by its source node and destination node. While the
inelastic flow represents streaming traffic with fixed rates and
stringent delay constraints such as real-time voice and video
traffic, the elastic flow represents delay-tolerant traffic with
adaptive rates such as non-real-time file sharing and email
applications. The set of all flows in the network is denoted by
F , which is partitioned into two subsets, Fe and Fi, where Fe

is the set of elastic flows and Fi is the set of inelastic flows.
Next, we describe the characteristics of inelastic and elastic
flows in more detail.
Inelastic Flow: We let fi denote an inelastic flow in the
network with source si and destination di. Each inelastic flow
fi is associated with a fixed set of routes Ri. The rth route
of this set is described by a vector R(r)

i such that R(r)
i [l] = 1

if link l ∈ L is on that route, and zero otherwise. Let x
(r)
i [t]

be the number of injected packets on the rth route of flow fi

at time slot t, and let xi[t] := (x(r)
i [t])R

(r)∈Ri

fi∈Fi
be the vector

of inelastic flow packets injected on each route in slot t. Note
that we slightly abuse our notation by using xi to denote rate
vector of all inelastic flows, while x

(r)
i stands for the rate of

flow fi ∈ Fi over route r ∈ Ri. We assume that the packet
arrivals of the inelastic flow fi follow a stochastic process
Ai[t] that is identically and independently distributed (i.i.d.)
over time with a fixed mean rate, denoted by ai := E(Ai[t]),
and a finite second moment, i.e. E(A2

i [t]) < ∞.

To clarify the difference between Ai[t] and (x(r)
i [t])r∈Ri

,
we note that Ai[t] denotes the number of packets generated by

flow fi while (x(r)
i [t])r∈Ri

describes the number of packets
injected into the network to traverse each of the available
routes of flow fi. Thus, Ai[t] is an uncontrollable stochastic
process describing exogenous arrivals, whereas (x(r)

i [t])r∈Ri

is controllable by the network algorithm.
For notational convenience, we define

zl(xi[t]) :=
∑

fi∈Fi

|Ri|∑
r=1

x
(r)
i [t]R(r)

i [l]

to denote the total number of inelastic packets on link l for a
given xi[t].
Elastic Flow: We let fe denote an elastic flow in the network
with source se and destination de. We assume that each elastic
flow fe is associated with a single route Re, and we let xe[t] be
the the number of injected packets of flow fe in slot t. Similar
to the inelastic case, we also define xe[t] := (xe[t])fe∈Fe to
be the vector of elastic flow rates in slot t, and

yl(xe[t]) :=
∑

fe∈Fe

xe[t]Re[l]

to denote the total number of elastic packets on link l. Asso-
ciated with each elastic flow fe there exists a utility function
Ue(·) that measures the “satisfaction” of that flow as a function
of its mean injection rate x̄e := limT→∞ 1

T

∑T−1
t=0 xe[t].

In the text, we use x[t] := (xi[t],xe[t]) to denote the vector
of inelastic and elastic packets injected into the network in slot
t. Next, we provide a set of assumptions to be used later in
the analysis:

Assumption 1: The elastic routing matrix [Re]fe∈Fe has
full row rank, which guarantees that given q, there exists a
unique p such that q = ([Re]fe∈Fe

)T p.
Assumption 2: The inelastic arrival process {Ai[t]}fi∈Fi

is
such that there exists a vector xi satisfying

|Ri|∑
r=1

x
(r)
i = ai,∀fi ∈ Fi, and zl(xi) < cl,∀l ∈ L.

This condition implies that the inelastic flows are supportable
by the network, i.e., there exists a rate division of the inelastic
flow rates over their available routes which can support the
arriving traffic.

Assumption 3: The utility functions {Ue(xe)}fe are strictly
concave, twice differentiable, and increasing functions. Such
an assumption is commonly used to capture the diminishing
returns to the elastic flows of an increase in the service rate.

Assumption 4: For each elastic flow fe ∈ Fe, its utility
function Ue(x) satisfies: for each m > 0 and M ∈ [m,∞),
there exists c̃1, C̃1, c̃2, and C̃2, with 0 < c̃1 < C̃1 < +∞,
0 < c̃2 < C̃2 < +∞, satisfying c̃1 ≤ U ′′

e (x) ≤ C̃1, c̃2 ≤(
U ′−1

e

)′ (x) ≤ C̃2, for all x ∈ [m,M ].
We note that Assumption 1 is not critical in the proof of sta-

bility but will simplify our proof. Also note that Assumptions 3
and 4 on the utility functions are not restrictive and hold for the
following class of utility functions U(x) = w x(1−a)/(1− a),
for a > 0, which is known to characterize a large class of
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fairness concepts such as max-min fairness and weighted-
proportional fairness ([25] and the references therein).

In subsequent discussions, when the distinction between
real and non-real-time routes is unnecessary, we will simply
refer to a route as R without any subscripts. Furthermore, for
simplicity, we will use zl[t] for zl(xi[t]) and yl[t] for yl(xe[t]).
Queueing Architecture and Evolution: In our system, for
each link (i, j) ∈ L, a single priority queue is maintained at
the transmitting node i, which holds all the packets whose
routes traverse (i, j). Since the inelastic flows are expected to
have more stringent delay constraints, their packets are always
stored ahead of those of the elastic flows. We let pl[t] denote
the queue length of the buffer associated with link l at the
beginning of slot t, and define

qR[t] =
∑

l∈L
R[l]pl[t]

to be the total queue length on route R. Notice that pl[t] and
qR[t] counts both the inelastic and elastic flows’ packets.

During each time slot, the queue pl evolves as

pl[t + 1] = (pl[t] + yl[t] + zl[t]− cl)+, (1)

where x+ = max(0, x). This evolution is based on a link-
centric decomposition ([17]) and implicitly assumes that pack-
ets injected into the source nodes by the flows, denoted by
x[t], arrive at the downstream nodes instantaneously. In reality,
packets will reach downstream nodes only after a queueing
and propagation delay incurred in the intermediate nodes. It is
shown in prior works ([27], [5], [28], [17]) that the inclusion
of these dynamics do not affect the long-term stability and
fairness characteristics of the system, and can be added to our
queueing architecture by introducing a regulator queue before
the queues associated with each link. Thus, in this work we
use the evolution in (1) which possess a more tractable and
cleaner form.

Definition 1 (Stability): We say that a queue qR is stable if

lim sup
T→∞

1
T

T−1∑
t=0

E (qR[t]) ≤ B, (2)

where B is some finite positive value. We say that the network
is stable if all aggregate queues {qR} for both inelastic and
elastic flows are stable.

Given the above network and traffic model, we aim to:
• Develop a mechanism that maximizes the total utility
achieved by elastic flows, while satisfying the rate demands of
the inelastic traffic. To that end, we design a joint congestion
control and load balancing algorithm in Section III.
• Investigate means of extending our mechanism to improve
the delay performance of both types of flows. To that end, we
extend our joint algorithm in Section IV-A by adding appropri-
ately constructed virtual queues with controllable parameters
into the framework to achieve delay improvements.
• Analyze the performance of the joint algorithm under
dynamic arrivals and departures to understand the effect of
short-lived flows. To that end, we show in Section IV-B that

such connection-level dynamics can be accommodated by our
joint algorithm.

Before addressing these goals, we note that the load balanc-
ing component of our joint algorithm will dynamically control
the distribution the inelastic flow rates over its available routes.
Thus, the effect of inelastic traffic on the elastic traffic cannot
be simply modeled as a constant decrease in the capacity of
the network, and a more sophisticated approach is needed.
In particular, the inelastic flow rates on each route must be
balanced optimally to allow for the maximum utilization of the
network resources by the competing elastic flows. We develop
such an algorithm in the next section.

III. JOINT CONGESTION CONTROL AND LOAD
BALANCING

In this section, we address our first main objective, i.e., that
of developing an algorithm that provides maximum utilization
of elastic traffic while guaranteeing the support of inelastic
traffic. We start by describing our objective mathematically in
the form of a stochastic optimization problem.
Stochastic Network Optimization (SNO) Problem:

max
{x[t]≥0}t≥0

∑

fe∈Fe

Ue(x̄e) (3)

s.t. The Queue Evolution as in(1),
Network Stability as in(2),
|Ri|∑
r=1

x
(r)
i [t] = Ai[t],∀fi ∈ Fi,∀t > 0.

We solve this problem by first analyzing a simpler deter-
ministic fluid model in Section III-A. The solution to this fluid
model will help in exposition as well as in providing insights
on the solution of the above more complex problem. Then, we
return in Section III-B to the stochastic problem.

A. Heuristic Fluid Model

In the fluid model scenario, all the dynamics and random-
ness are ignored, and the stochastic constraints are replaced
with static constraints. In particular, the inelastic flow fi is
assumed to have a fixed arrival rate ai, and the network
stability condition is replaced by a condition on total link rate
being no more than capacity. Then, the SNO problem reduces
to the following problem in this scenario.
Fluid Network Optimization (FNO) Problem:

max
x≥0

∑

fe∈Fe

Ue(xe)

s.t. yl(xe) + zl(xi) ≤ cl,∀l ∈ L (4)
|Ri|∑
r=1

x
(r)
i = ai,∀fi ∈ Fi (5)

In our discussion, we will abbreviate the aggregate elastic
and inelastic rates, yl(xe) and zl(xi), with yl and zl for
brevity. We note that Condition (4) aims to capture the network
stability condition in the fluid model by guaranteeing that
the total load on a link is below the link capacity, and
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Condition (5) guarantees that inelastic flows receive enough
bandwidth to satisfy its rate demands. Thus, the optimization
problem is to maximize the sum of utilities of elastic flows
when guaranteeing that inelastic flows are supported.

It is not difficult to show that the optimum value of FNO is
an upper bound for the optimum value of SNO. To see this,
note that any solution {x[t]}t≥0 that solve SNO must also
satisfy ȳl + z̄l ≤ cl, where ȳl := limT→∞ 1

T

∑T−1
t=0 yl(x[t]),

and z̄l is defined similarly. Otherwise, the queue l cannot be
stable. This is equivalent to condition (4) in FNO. Thus, FNO
contains all the feasible points of SNO. In Section III-B, we
will design an algorithm under which SNO can get arbitrarily
close to the FNO solution, and thus guarantees the optimality
of SNO.

We start by showing that there exists a unique xe =
{xe}fe∈Fe , that solves the FNO problem under Assumption 2
and 3 1.

Proposition 1: If Assumption 2 and 3 hold, then the x∗e =
{xe}fe∈Fe that solves the network optimization problem is
unique.

Proof: The optimization problem has a unique solution
because the utility functions are strictly concave, and con-
straints (4) and (5) are linear.

To solve the FNO problem, we construct a partial La-
grangian. Define αl to be the Lagrange multipliers associated
with constraint (4). Then, the partial Lagrangian can be written
as

L(xi,xe, α) =
∑

fe∈Fe

Ue(xe)−
∑

l∈L
αl(zl + yl − cl)

=
∑

fe∈Fe


Ue(xe)−


 ∑

l:R
(r)
e [l]=1

αl


 xe




+
∑

l∈L
αl(cl − zl).

Since FNO problem satisfies Slater’s condition ([4]) due to
Assumption 2, the strong duality holds. We can then conclude
that there exists x∗ := (x∗e,x

∗
i ), and α∗ := (αl)l such that

• x∗ solves the FNO problem;
• x∗ ∈ arg maxx≥0 L(xi,xe,α

∗).
Note that

max L(x, α∗) = max
∑

fe∈Fe

(
Ue(xe)− β∗Re

xe

)

−min
∑

l∈L
α∗l zl +

∑

l∈L
α∗l cl,

where βR :=
∑

l∈LR[l]αl. This decomposition suggests that
(i) The elastic flow fe should allocate its rates such that

x∗e = U ′−1
e

(
β∗
R

(i)
e

)
; (6)

1We note that the strict concavity assumption in Assumption 3 can be
relaxed and our results can be extended to state that the elastic rates converges
to the set of optimal rates rather than the unique optimum rate.

(ii) The inelastic flow fi, should distribute its packets over
its available routes {x∗(r)

i }r∈Ri
such that

min
|Ri|∑
r=1

x
(r)
i β∗

R
(i)
i

(7)

s.t.
∑

x
(r)
i = ai.

Since the optimization problem (7) has a linear objective,
the following lemma holds ([4]):

Lemma 1: For any R(r)
i ∈ Ri, we have:

• β∗
R

(r)
i

= β∗
R

(r′)
i

if x
∗(r)
i > 0 and x

∗(r′)
i > 0; and

• β∗
R

(r)
i

< β∗
R

(r′)
i

if x
∗(r)
i > 0 and x

∗(r′)
i = 0.

This lemma implies that considering an inelastic flow fi,
all routes in the optimal solution with a positive flow have the
same value of β.

We note that αl of FNO is closely associated with the
queue length pl of SNO, and correspondingly βR of FNO
is closely associated with the aggregate queue length on a
route qR of SNO. Such connections are revealed and exploited
in several earlier works for designing different network algo-
rithms (e.g. [15], [16], [6], [7], [26]). The following algorithm
is a continuous-time version of the Lagrangian method for
finding the optimum solution of FNO. This algorithm will
later be used to solve the SNO. To distinguish the continuous-
time evolution from the discrete-time evolution, we use (t) to
denote continuous time index, while [t] denotes discrete time
index.

Joint Congestion Control and Load Balancing Algorithm
for the FNO problem:
• Queue evolution for link l:

ṗl(t) :=
dp(t)
dt

= (zl(t) + yl(t)− cl)
+
pl(t)

,

where (v(t))+p(t) is zero if v(t) < 0 and p(t) = 0; and
v(t) otherwise.

• Congestion Controller for elastic flow fe:

xe(t) = U ′−1
e (qRe

(t)) .

• Load Balancing implemented for inelastic flow fi:

ẋ
(r)
i (t) =

(
q̄i(t)− q

R
(r)
i

(t)
)+

x
(r)
i (t)

, (8)

where q̄i(t) satisfies

|Ri|∑
r=1

(
q̄i(t)− q

R
(r)
i

(t)
)+

x
(r)
i (t)

= 0, (9)

and
|Ri|∑
r=1

x
(r)
i (0) = ai.

Remark: Note that the congestion control algorithm is
motivated by equality (6). The load balancing algorithm (8) is
motivated by Lemma 1. In particular, for each inelastic flow fi,
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when the system reaches the equilibrium, we have ẋ
(r)
i (t) = 0

for all r. This implies that q
R

(r)
i

(t) = q̄i(t) for x
(r)
i (t) > 0

and q
R

(r)
i

(t) ≥ q̄i for x
(r)
i (t) = 0. Thus, at the equilibrium

point, q
R

(r)
i

(t) satisfies Lemma 1. Furthermore, from (9), it is
easy to see that

|Ri|∑
r=1

x
(r)
i (t) = ai for all t. (10)

The intuition behind the load balancing algorithm described
above is to shift the inelastic flows to less heavily loaded routes
to allow for the maximum network utilization for elastic flows.
In the algorithm a source needs all the queue information
along its route, however as we mentioned in Section II, we can
send queue information hop by hop and still achieve stability
even if this information is delayed. Thus this algorithm can
be implemented fully distributed.

Next, we will show the stability and optimality of our joint
congestion control and load balancing algorithm.

Proposition 2: Under Assumption 1, 2 and 3, the joint
congestion control and load balancing algorithm is globally
asymptotically stable, i.e. limt→∞ xe(t) = x∗e starting from
any x(0), where x∗e is the optimal solution to the FNO
problem. Furthermore, (10) holds.

Proof: See [14] for the proof.

B. Stochastic Model
We now return to the original SNO problem with a minor

variation:
SNO Problem with Parameter K (SNO-K):

max
{x[t]≥0}t≥0

∑

fe∈Fe

KUe(x̄e)

s.t. The Queue Evolution as in(1),
Network Stability as in(2),
|Ri|∑
r=1

x
(r)
i [t] = Ai[t],∀fi ∈ Fi,∀t > 0,

where K is a positive design parameter. We will see that K
parameter is critical in eliminating the effect of randomness in
the stochastic system on the long-term performance. Note that
the solution to the SNO-K problem is independent of the value
of K, and its optimum solution is identical to the solution of
the SNO problem.

Motivated by the analysis in the fluid model, we propose
the following joint congestion control and load balancing
algorithm:

Joint Congestion Control and Load Balancing Algorithm
for the SNO-K problem:
• Queue evolution for a link l:

pl[t + 1] = (pl[t] + zl[t] + yl[t]− cl)
+

.

• Congestion Controller for elastic flow fe:

xe[t] = min
{

M, U ′−1
e

(
1
K

qRe
[t]

)}
,

where M is a positive constant satisfies M > 2max
l∈L

{cl}.
• Load Balancing implemented for inelastic flow fi:

4x
(r)
i [t] =

(
q̄i[t]− q

R
(r)
i

[t]
)+

x
(r)
i [t+1]

,

or equivalently,

x
(r)
i [t + 1] =

(
x

(r)
i [t] + q̄i[t]− q

R
(r)
i

[t]
)+

,

where q̄i[t] satisfies

|Ri|∑
r=1

(
q̄i[t]− q

R
(r)
i

[t]
)+

x
(r)
i [t+1]

= Ai[t + 1]−Ai[t],

and
|Ri|∑
r=1

x
(r)
i [0] = Ai[0].

Remark: The factor 1/K in the congestion control equation
comes from the factor K in the optimization problem. It
can be interpreted as the aggressiveness factor of the elastic
flow, as the congestion controller is inclined to inject more
packets into the network with larger K. Also note that the
load balancing implementation is slightly different from the
fluid model version to accommodate the randomness in the
arrival processes for inelastic flows. The update is modified to
ensure that

∑|Ri|
r=1 x

(r)
i [t] = Ai[t] holds for all t.

The next proposition establishes the stability and optimality
of the joint algorithm for the stochastic system.

Proposition 3: Under Assumptions 1, 2, 3 and 4, the joint
congestion control and load balancing algorithm stabilizes the
system in the sense that the Markov chain (p[t],xi[t]) is
positive recurrent with

lim sup
T→∞

1
T

T−1∑
t=0

E
(∥∥qRe

[t]− β∗Re

∥∥) ≤ B + εσK

ε
,

and guarantees that the rate allocation satisfies,

lim sup
T→∞

1
T

T−1∑
t=0

E
(∥∥xe[t]− x∗e

∥∥2
)
≤ B

c̃3K
.

Here x∗e is the optimal solution to the SNO-K problem, σ is an
arbitrarily chosen positive constant, and ε and c̃3 are positive
values.

Proof: See [14] for the proof.
Note that as the design parameter K increases, the rate

converges to the optimal allocation at the cost of increased
equilibrium queue-length levels. While such tradeoffs between
optimality and delay is observed in earlier works under a single
type of traffic (e.g. [21], [7]), in this work a new interaction
is observed between inelastic and elastic traffic through the
parameter K. In particular, larger values of K result in more
aggressive elastic flows, resulting in larger queue-lengths on
the links they traverse. This forces the inelastic flows to
redistribute their flows to less loaded routes. This increases
the utilization of the network, while causing more delay to
inelastic flows. In order to provide better delay performance
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to both types of traffic, in the next section we extend our base
algorithm by using virtual queues.

IV. EXTENSION OF THE ALGORITHM

In this section, we extend our joint congestion control and
load balancing algorithm in two important directions: we first
provide a virtual queue based solution that reduces the overall
queue length with a negligible sacrifice in capacity. We then
provide a solution that takes flow arrivals and departures into
account.

A. Virtual Queue Algorithm

Inelastic applications are delay sensitive, hence we assume
that packets from inelastic flows have strict priority over their
elastic counterparts. Thus, the inelastic flows do not see the
elastic flows in the queues they traverse. But in some cases
a link might be critically loaded by the inelastic traffic itself,
thus resulting in large delays. Also, elastic traffic may have
some delay constraints that are non-negligible.

An effective way of reducing the experienced delay is by
including virtual queues that are served at a fraction of the
actual service rate, and by using the virtual queue-length
values as prices ([12]). To that end, we introduce two types of
virtual queues with parameters, ρ1 and ρ2, which control the
total load and the inelastic flow load, respectively.

Here for simplicity, we go back to the fluid model to design
and analyze the joint congestion control and load balancing
algorithm using virtual queues. We would like to have x̃∗ :=
(x̃∗e, x̃

∗
i ) solve the following optimization problem.

FNO Problem with Virtual Queues (FNO-VQ):

max
x≥0

∑

fe∈Fe

Ue(xe) (11)

s.t. yl(xe) + zl(xi) ≤ ρ1cl,∀l ∈ L
zl(xi) ≤ ρ2cl,∀l ∈ L
|Ri|∑
r=1

x
(r)
i = ai,

where 0 < ρ2 ≤ ρ1 < 1.
To guarantee the feasibility of the optimization problem

above, we replace our earlier Assumption 2 with:
Assumption 5: There exists a xi such that

|Ri|∑
r=1

x
(r)
i = ai,∀fi ∈ Fi, and zl(xi) < ρ2cl,∀l ∈ L.

To solve the FNO-VQ problem, we first introduce virtual
queues for elastic and inelastic flows on each link respectively.
The virtual queue length θl(t) for elastic flows evolutes as
follows:

θ̇l(t) = (zl(t) + yl(t)− ρ1cl)
+
θl(t)

The virtual queue length for inelastic flows γl(t) evolves as
follows:

γ̇l(t) = (zl(t)− ρ2cl)
+
γl(t)

.

Note that when the total instantaneous traffic load is larger
than ρ1cl or the inelastic traffic load is larger than ρ2cl, the
virtual queues will build up, and the network controller will
reduce the traffic load.

Based on this virtual-queue scheme, we have the following
joint congestion control and load balancing algorithm:

Joint Congestion Control and Load Balancing Algorithm
for FNO-VQ problem:
• Virtual queue evolution for a link l:

Elastic flows: θ̇l(t) = (zl(t) + yl(t)− ρ1cl)
+
θl(t)

;

Inelastic flows: γ̇l(t) = (zl(t)− ρ2cl)
+
γl(t)

.

• Congestion Controller for elastic flow fe:

xe(t) = U ′−1
e (sRe

(t)) ,

where sRe
(t) =

∑
l:Re[l]=1 θl(t) is the aggregated virtual

queue length of the elastic flow.
• Load Balancing implemented for inelastic flow fi:

ẋ
(r)
i (t) =

(
µ̄i(t)− µ

R
(r)
i

(t)
)+

x
(r)
i (t)

,

where µR(t) =
∑

l:R[l]=1(θl(t) + γl(t)), µ̄i(t) satisfies

|Ri|∑
r=1

(
µ̄i(t)− µ

R
(r)
i

(t)
)+

x
(r)
i (t)

= 0

and
|Ri|∑
r=1

x
(r)
i (0) = ai.

Remark: In the above algorithm, note that the congestion
control algorithm only responds to the virtual queues for
elastic flows, but the load balancing algorithm responds to
both the virtual queues for elastic flow and inelastic flows.
Further, the actual queue length is not used in the algorithm.

In the following proposition, we show the equilibrium point
of the algorithm with virtual queue is the optimal solution of
(11).

Proposition 4: Under Assumptions 1, 3 and 5, the joint con-
gestion control and load balancing algorithm for the FNO-VQ
problem is globally asymptotically stable, i.e., lim

t→∞
xe(t) =

x̃∗e where x̃∗e is the solution of the network optimization
problem (11).

Proof: See [14] for the proof.
The extension of this result to the stochastic scenario is

omitted since it follows the same line of reasoning as in
the joint congestion control and load balancing algorithm of
Section III.

B. Dynamical File Arrivals and Departures

So far, we assumed long lasting flows. On the Internet,
however, many elastic flows including email, web flows, etc
are “mice” flows, i.e., short-lived flows. Thus, these short-lived
flows might leave the network before the network reaches its

6



equilibrium point (the optimal rate allocation). In this section,
we consider the scenario of dynamic flow generation and
termination in networks with heterogenous traffic (see [18] and
references therein). Note that since the rate allocation depends
on the set of elastic flows, there exists no fixed rate allocation
in this case. Thus, we focus on the dynamics of file arrivals
and departures, where we assume that
(i) The number of inelastic flows are fixed.
(ii) Files belonging to elastic flows dynamically arrive and
depart. We assume that files arrive according to independent
Poisson processes with rate λe files/sec, the file sizes are
independently and exponentially distributed, with mean file
size 1/µe bits. Further, let ne(t) denote the number of files
belonging to flow fe in the network at time t.

The following result states that our joint congestion control
and load-balancing algorithm maximizes the network through-
put region.

Proposition 5: Under Assumptions 1-3, the network is sta-
ble under the joint congestion control and load balancing

algorithm if there exists x̂i such that
|Ri|∑
r=1

x̂
(r)
i = ai, and for

any l ∈ L,

cl −
∑

fi∈Fi

|Ri|∑
r=1

x̂
(r)
i R(r)

i [l] >
∑

fe∈Fe

λe

µe
Re[l]. (12)

Under Assumptions 1, 4, and 5, the network is stable under
the joint congestion control and load balancing algorithm with

virtual queues if there exists x̂i such that
|Ri|∑
r=1

x̂
(r)
i = ai, and

for any l ∈ L, we have

∑

fi∈Fi

|Ri|∑
r=1

x̂
(r)
i R(r)

i [l] ≤ ρ2cl,

ρ1cl −
∑

fi∈Fi

|Ri|∑
r=1

x̂
(r)
i R(r)

i [l] >
∑

fe∈Fe

λe

µe
Re[l]. (13)

Proof: See [14] for the proof.

V. SIMULATION RESULTS

In this section, we provide the simulation results for our al-
gorithms under the stochastic model where the arrival process
of the inelastic flow fi is such that Ai[t] is Poisson distributed
with mean ai for each t.

A. The Effect of the Aggressiveness of the Inelastic Flow

We noted in Section III-B that the factor K represents the
‘aggressiveness’ of the elastic flows. Also, it is revealed in
Proposition 3 that K can be used to control the proximity to
the optimal allocation. Here, we test these results for the case
of proportionally fair allocation, which corresponds to having
the utility function is chosen as ([25]): Ue(x) = α lnx, and
thus U ′−1

e ( q
K ) = αK

q .

In this first set of simulations, we considered the network
shown in Figure 3 with the indicated link capacities and
inelastic and elastic flows. Note that the arrival rate of the
inelastic flow is ai = 15 to be distributed over the two dashed
routes.

The joint algorithm for the SNO-K problem is implemented
for this network and the mean elastic rate allocation is com-
puted for different values of K. Figure 4 illustrates the effect

Fig. 3. Topology of the network

of K on the rates of the elastic flow and the distribution of
the inelastic flow’s rate over its available routes. We see that
as the elastic flow becomes more aggressive, it achieves a
higher throughput and thus consumes greater resource on the
bottleneck link (2, 5). As a reaction to the increased contention
from the elastic flow, the load balancing mechanism of the
inelastic flows automatically pushes more and more traffic of
the inelastic flow onto route 1.
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Fig. 4. Effect of K on the average rates on each route of Figure 3.

Note that although increasing the aggressiveness of the
elastic flow will increase the utilization of the network, it will
result in more delays on the network flows as the queue length
over the whole network grows, as shown by Proposition 3.
Proposition 3 also suggests that larger K resulting better
convergence to the optimal operating point, which is confirmed
in the above simulation.

B. More Complex Topology
To illustrate other facets of our algorithm, we conducted

our simulation in a more complicated network with different
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flow assignments. The topology of the network is shown in
Figure 5. The capacity of all the links in the network is 20, and
we used elastic flows with identical utility functions and K =
200 in our simulation, expecting close to optimal utilization
(as shown in Figure 4).

We simulate a sequence of scenarios discussed in five
phases. In Phase 1, two disjoint inelastic flows with the routes
as shown in Figure 5 share the network, having rates ai1 = 20
and ai2 = 10. The average rates provided on each route by
our joint algorithm are given in Figure 5.

When the two inelastic flows share a common bottleneck
link in Phase 2, the load balancing algorithm will shift part of
the traffic from the bottleneck link to yield the average rates
given in Figure 6.

Fig. 5. Phase 1: Two inelastic
flows with disjoint routes.

Fig. 6. Phase 2: Two inelastic
flows with intersecting routes.

In Phase 3, an elastic flow enters the system and shares a
link with fi2 as in Figure 7. We can see from the average
rates given in the figure that this elastic flow not only has an
effect on fi2 but also shifts the rate of fi1. Here, it can be
seen that the interaction between the flows becomes complex
even for small networks, and it is not clear what the best
allocation is. Yet, through our joint algorithm, fe1 is able
to operate dynamically close to the full capacity of all the
resources available to it.

After adding another elastic flow fe2 into the network which
is disjoint with all other flows in Phase 4 shown in Figure 8,
we can see that it has no effect on the rates of all other routes,
and it fully utilizes that route.

Fig. 7. Phase 3: Two intersect-
ing inelastic flows, and one elastic
flow that interacts with them.

Fig. 8. Phase 4: Two intersecting
inelastic flows, and two elastic
flows with disjoint routes.

In Phase 5, a third elastic flow fe3 enters and shares
common links with both fi1 and fi2, as shown in Figure 9. We
can see that since fe1 also shares links with fi2, fe3 also has
effect on it. It can be easily verified that xe1 = xe3 = 15 is
the optimal operating point, and the average rates achieved

by our algorithm is very close to optimal as predicted by
Proposition 3.

To study the importance of dynamic load balancing, we also
simulated a static rate distribution algorithm as a basis for
comparison. This algorithm equally splits the inelastic traffic
onto each of its routes (assume it is feasible in the network),
and does the congestion control of the elastic flows in the same
manner as in our algorithm. This algorithm is implemented
for the scenario in Phase 5 with the average rates indicated
in Figure 10. We see that due to the absence of dynamic
load balancing, the elastic flows cannot utilize the network
fully since the rates assigned to the inelastic flows are fixed.
Under the logarithm utility function, this approach achieves a
utility of 1.61αK while our algorithm achieves 2.71αK on
the elastic flow fe3.

Fig. 9. Phase 5: A third elastic
flow enters that intersects with
two inelastic flows.

Fig. 10. Performance under static
rate distribution for inelastic traf-
fic.

C. Simulation using the Virtual Queue Algorithm

In this simulation, we use the joint congestion control and
load balancing algorithm with virtual queue to show the impact
of the virtual queue implementation on delay. The simulation is
conducted in the network showing in Figure 11. The parameter
ρ1 was set to 0.95 and ρ2 was set to 0.9 over all links.

Fig. 11. Network topology for simulating the virtual queue algorithm

Table I compares the performance with and without virtual
queues. As we can observe, under the original algorithm,
Route 1 is critically loaded by inelastic flow, resulting in a
large delay. With the virtual queue implementation, we manage
to decrease the rate on Route 1, thus dropping the delay
significantly. As one can observe from the table, the delay is
greatly reduced for both elastic and inelastic traffic without
a significant degradation in the rate of the elastic traffic.
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TABLE I
RATE AND DELAY ON EACH ROUTES

w/o virtual queue w/ virtual queue
rate delay rate delay

route 1 4.9955 40.320 4.4984 0.5405
route 2 9.7414 0.0440 10.502 0.0005
route 3 10.259 15.854 8.5118 1.0137
route 4 4.9950 77.461 4.7817 1.9765

Thus, especially under critical loaded scenarios, virtual queue
implementation can achieve significant delay improvements.

VI. CONCLUSION

In this work, we consider the optimal control of networks
that serve heterogeneous traffic types with diverse demands,
namely inelastic and elastic traffic. We formulated a new
network optimization problem and proposed a novel queueing
architecture, and develop a distributed load balancing and con-
gestion control algorithm with provably optimal performance.
We also provided an important improvement to our joint
algorithm to achieve better delay performance by introducing
new design parameters (ρ1, ρ2) together with a set of virtual
queues. We have also extended our algorithm to the case of
dynamic arrivals and departures of the flows. Such a scenario is
relevant to real-world operation as the real-world applications
randomly initiate flows that lasts for a random duration.

Future research of this topic includes: (i) One future di-
rection is to extend our results to multi-hop wireless net-
works with fading channels and interference, and develop
joint load-balancing/congestion control/routing/scheduling al-
gorithms. (ii) Here, we considered a time-slotted system,
and assumed that the network is perfectly synchronized. The
impact of possible asynchronism on the algorithm performance
needs to be studied. (iii) We adopted a link-centric formula-
tion, which assumes instantaneous arrivals of the packets at all
the links on their routes. An alternative is to consider a node-
centric formulation, where packets are sequentially transferred,
and a source only requires the information of the queues at
the source. (iv) Here we restricted each elastic flow to a single
route. An extension to multiple routes or dynamic routing for
elastic flow constitutes a part of our ongoing work. (v) So far,
we have focused on the stability and long term guarantees for
the traffic types. We aim to investigate oscillatory behavior
([20]) and delay characteristics in our future work.
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