
A Throughput Optimal Algorithm for Map Task Scheduling
in MapReduce with Data Locality

Weina Wang, Kai Zhu and Lei Ying
Electrical, Computer and Energy Engineering

Arizona State University
Tempe, Arizona 85287

{weina.wang, kzhu17,
lei.ying.2}@asu.edu

Jian Tan and Li Zhang
IBM T. J. Watson Research Center
Yorktown Heights, New York, 10598

{tanji, zhangli}@us.ibm.com

ABSTRACT

MapReduce/Hadoop framework has been widely used to
process large-scale datasets on computing clusters. Schedul-
ing map tasks to improve data locality is crucial to the per-
formance of MapReduce. Many works have been devoted
to increasing data locality for better efficiency. However, to
the best of our knowledge, fundamental limits of MapRe-
duce computing clusters with data locality, including the
capacity region and throughput optimal algorithms, have
not been studied. In this paper, we address these problems
from a stochastic network perspective. Our focus is to strike
the right balance between data-locality and load-balancing
to maximize throughput. We present a new queueing archi-
tecture and propose a map task scheduling algorithm consti-
tuted by the Join the Shortest Queue policy together with
the MaxWeight policy. We identify an outer bound on the
capacity region, and then prove that the proposed algorithm
can stabilize any arrival rate vector strictly within this outer
bound. It shows that the algorithm is throughput optimal
and the outer bound coincides with the actual capacity re-
gion. The proofs in this paper deal with random process-
ing time with different parameters and nonpreemptive tasks,
which differentiate our work from many other works, so the
proof technique itself is also a contribution of this paper.

1. INTRODUCTION
Processing large-scale datasets has become an increasingly

important and challenging problem as the amount of data
created by online social networks, healthcare industry, sci-
entific research, etc., explodes. MapReduce/Hadoop [4, 1] is
a simple yet powerful framework for processing large-scale
datasets in a distributed and parallel fashion, and has been
widely used in practice, including Google, Yahoo!, Facebook,
Amazon and IBM.

A production MapReduce cluster may even consist of tens
of thousands of machines [2]. The stored data are typically
organized on distributed file systems (e.g., Google File Sys-
tem (GFS) [5], Hadoop Distributed File System (HDFS)
[9]), which divide a large dataset into data chunks (e.g., 64
MB) and store multiple replicas (by default 3) of each chunk
on different machines. A data processing request under the
MapReduce framework, called a job, consists of two types
of tasks: map and reduce. A map task reads one data chunk

Copyright is held by author/owner(s).

and processes it to produce intermediate results (key-value
pairs). Then reduce tasks fetch the intermediate results and
carry out further computations to produce the final result.
Map and reduce tasks are assigned to the machines in the
computing cluster by a master node which keeps track of
the status of these tasks to manage the computation pro-
cess. In assigning map tasks, a critical consideration is to
place map tasks on or close to machines that store the input
data chunks, a problem called data locality.

For each task, we call a machine a local machine for the
task if the data chunk associated with the task is stored
locally, and we call this task a local task on the machine;
otherwise, the machine is called a remote machine for the
task and correspondingly this task is called a remote task
on the machine. Locality also refers to the fraction of tasks
that run on local machines. Improving locality can reduce
both the processing time of map tasks and the network traf-
fic load since fewer map tasks need to fetch data remotely.
However, assigning all tasks to local machines may lead to
an uneven distribution of tasks among machines, i.e., some
machines may be heavily congested while others may be
idle. Therefore, we need to strike the right balance between
data-locality and load-balancing in MapReduce.

In this paper, we call the algorithm that assigns map tasks
to machines a map-scheduling algorithm or simply a schedul-
ing algorithm. There have been several attempts to increase
data locality in MapReduce to improve the system efficiency.
For example, the default scheduler of Hadoop takes the lo-
cation information of data chunks into account and attempt
to schedule map tasks as close as possible to their machines
[12, 13]. The Fair Scheduler [13] is widely used in practice
and it becomes the de facto standard in the Hadoop commu-
nity. It uses a scheduling algorithm called delay scheduling,
which delays some tasks for a small amount of time to attain
higher locality. These algorithms and some other works are
reviewed and discussed in detail in the related work section.

While the data locality issue has received a lot of attention
and scheduling algorithms that improve data locality have
been proposed in the literature and implemented in practice,
to the best of our knowledge, none of the existing works have
studied the fundamental limits of MapReduce computing
clusters with data locality. Basic questions such as what is
the capacity region of a MapReduce computing cluster with
data locality, which scheduling algorithm can achieve the full
capacity region, remain open.
In this paper, we will address these basic questions from

a stochastic network perspective. Motivated by the obser-

Performance Evaluation Review, Vol. 40, No. 4, March 2013 33

vation that a large portion of jobs are map-intensive, and
many of them only require map tasks [7], we focus on map-
scheduling algorithms and assume reduce tasks are either
not required or not the bottleneck of the job processing.
Thus we simply use task to refer to map task in the rest
of this paper. We assume the data have been divided into
chunks, and each chunk has three replicas stored at three
different machines. The computing cluster is modeled as a
time-slotted system, in which jobs consisting of a number of
map tasks arrive at the beginning of each time slot accord-
ing to some stochastic process. Each map task processes
one data chunk. Within each time slot, a task is completed
with probability α at a local machine, or with probability γ
(γ < α) at a remote machine, i.e., the service times are ge-
ometrically distributed with different parameters. Based on
this model, we establish the following fundamental results:

• First, we present an outer bound on the capacity region of
a MapReduce computing cluster with data locality, where
the capacity region consists of all arrival vectors for which
there exists a scheduling algorithm that stabilizes the sys-
tem (stability region in [10]).

• We propose a new queueing architecture with one local
queue for each machine, storing local tasks associated with
the machine, and a common queue for all machines. Based
on this new queueing architecture, we propose a two-stage
scheduling algorithm under which a newly arrived task is
routed to one of the three queues associated with the three
local machines or the common queue using the Join the
Shortest Queue (JSQ) policy; and when a machine is idle,
it selects a task from the local queue associated with it or
the common queue using the MaxWeight policy [11].

• We prove that the joint JSQ and MaxWeight scheduling
algorithm is throughput optimal, i.e., it can stabilize any
arrival rate vector strictly within the outer bound of the
capacity region, which also shows that the outer bound is
tight and is the same as the actual capacity region. We
remark that existing results on MaxWeight-based schedul-
ing algorithms assume deterministic processing (service)
time or geometrically distributed processing time with
preemptive tasks. To the best of our knowledge, the sta-
bility of MaxWeight scheduling with random processing
time and nonpreemptive tasks has not been established
before. So the proof technique itself is a novel contribution
of this paper, and may be extended to prove the stability
of MaxWeight scheduling for other applications, in which
the service times are geometrically distributed. We re-
mark that recently in [8], the authors studied MaxWeight
scheduling for resource allocation in clouds and indepen-
dently established a similar result with more general ser-
vice time distributions.

2. RELATED WORK ON DATA LOCALITY

IN MAPREDUCE
The default scheduler of Hadoop is a FIFO scheduler [12],

which uses a locality optimization [12, 13] for map task
scheduling as in Google’s MapReduce [4]. The scheduling
algorithm works as follows: when a machine is ready to run
a new task, the scheduler first selects a job according to a
priority list, which is a FIFO queue by default, and then it
schedules the map task in the job with data closest to the

machine (on the machine if possible, otherwise on the same
rack, or finally on a different rack).

Hadoop has alternative schedulers available, among which
the Fair Scheduler is the de facto standard [13]. The Fair
Scheduler aims at giving every user a fair share of the cluster
capacity over time, so it uses the näıve fair sharing algorithm
for job selection. Instead of using a FIFO queue as the
priority list, the näıve fair sharing algorithm uses a certain
form of fairness as priority, and the locality optimization is
the same. Since strictly following a priority order during
scheduling sometimes forces tasks in the head-of-line job to
be scheduled on remote machines, the Fair Scheduler uses
a technique called delay scheduling [13] to further improve
locality. When a machine requests a new task, if the job
that should be scheduled next according to fairness does not
have available local tasks for this machine, it is temporarily
skipped for a small amount of time, letting other jobs launch
tasks instead. This technique gives more flexibility to the
job selection by taking data locality into consideration on
the job-level scheduling, which addresses the head-of-line
issue in most cases.

The scheduling algorithm Quincy [6] develops a graph-
based framework for cluster scheduling under a fine grain
cluster resource-sharing model with locality constraints. It
maps the fair scheduling problem to a graph datastructure
which encodes the competing demands of data locality and
fairness and then makes scheduling decisions by solving the
classic min-cost flow problem.

3. SYSTEM MODEL
We consider a discrete-time model for a computing cluster

with M machines, indexed 1, · · · ,M . Jobs come in stochas-
tically and when a job comes in, it brings a random number
of map tasks, which need to be served by the machines.
We assume that each data chunk is replicated and placed
at three different machines. Therefore, each task is associ-
ated with three local machines. It takes longer time for a
machine to process a task if the required data chunk is not
stored locally since the machine needs to retrieve the data
first. According to the associated local machines, tasks can
be classified into types denoted by

�L ∈ {(m1,m2,m3) ∈ {1, 2, · · · ,M}3 | m1 < m2 < m3

}
,

wherem1,m2,m3 are the indices of the three local machines.
We use the notation m ∈ �L to indicate machine m is a local
machine for type �L tasks.

3.1 Arrival and Service
Let A�L(t) denote the number of type �L tasks arriving at

the beginning of time slot t. We assume that the arrival pro-
cess is temporally i.i.d. with arrival rate λ�L. We further as-
sume that there is a positive probability for A�L(t) to be zero

and the arrival processes are bounded. Let λ = (λ�L : �L ∈ L)
be the arrival rate vector, where L is the set of task types
with arrival rates greater than zero; i.e., L = {�L | λ�L > 0}.

At each machine, the service times of tasks follow geomet-
ric distributions. The parameter of the geometric distribu-
tion is α for a task at a local machine, and γ at a remote
machine. The service process of a task can be viewed as a
sequence of independent trials with success probability α or
γ, and the sequence stops once we get a success, i.e., once
the task is finished. In this model, we assume α > γ, so the

34 Performance Evaluation Review, Vol. 40, No. 4, March 2013

�������	

�����

�����

�����

�����

�������	�

����	����� ��������

Figure 1: A simple example showing the necessity of task
scheduling algorithm under data locality.

�������	�

�
�
�

�
�
��

�
�

����	�����
��������	�����

��������	��	�
�

�������������
���

����

��		��	��	�
�	�����

�����	�����

����

���
��

����	��	�
�

�������	�

�������	�

��������

Figure 2: The Queue Architecture and Scheduling Algo-
rithm

average service time of local tasks is less than that of remote
tasks, i.e., 1/α < 1/γ. Note that α and γ characterize the
different processing efficiency due to data locality.

3.2 Task Scheduling Algorithm
The task scheduling problem is to assign incoming tasks

to the machines. Due to data locality, the task scheduling al-
gorithm can significantly affect the efficiency of the system.
As a simple example, consider a system with two machines
and two task types as in Figure 1. Machine 1 and machine 2
are local machines for the first and the second task type, re-
spectively. If both task types are served by remote machines,
then the system can be stable only when the arrival rates of
both task types are less than γ, resulting in a throughput
less than 2γ. However, if both task types are served by local
machines, the system can achieve a throughput close to 2α.

In this paper, we consider a task scheduling algorithm
consisting of two parts: routing and scheduling. We present
a new queue architecture as illustrated in Figure 2. The
master node maintains a queue for each machine m for local
tasks, denoted by Qm and called the local queue; and there
is a common queue for all machines, denoted by Q (or some-
times QM+1), and called the common remote queue. We use
a queue length vector

Q(t) =
(
Q1(t), Q2(t), · · · , QM (t), Q(t)

)
to denote the queue lengths at the beginning of time slot
t. When a task comes in, the master node routes the task
to some queue in the queueing system. When a machine is

idle, it picks a task from the corresponding local queue or the
common remote queue to serve. These two steps are illus-
trated in Figure 2. We call the first step routing, and with a
slight abuse of terminology we call the second step schedul-
ing. It should be clear from the context that whether we
are referring to the whole task scheduling problem or to this
scheduling step. Based on our queue architecture, we pro-
pose the following joint routing and scheduling algorithm.

• Join the Shortest Queue (JSQ) Routing. When
a task comes in, the master node compares the queue
lengths of its three local queues and the common remote
queue, and then routes the task to the shortest one. Ties
are broken randomly. Let A�L,m(t) and A�L(t) denote the

arrivals of type �L tasks allocated to Qm and Q, respec-
tively. Then the arrivals allocated to each queue can be
expressed by the arrival vector

A(t) =
(
A1(t), · · · , AM (t), A(t)

)
,

defined as

Am(t) =
∑

�L : m∈�L

A�L,m(t), m = 1, 2, · · · ,M,

A(t) =
∑
�L∈L

A�L(t).

• MaxWeight Scheduling. If machine m just finished a
task at time slot t − 1, then its working status is idle.
Otherwise, the machine must be working on some local or
remote task. Let fm(t) = 0, 1, 2 denote idle, working on
a local task, and working on a remote task, respectively.
The working status vector

f(t) = (f1(t), f2(t), · · · , fm(t))

and queue length vector Q(t) are reported to the master
at the beginning of time slot t, and the master makes
scheduling decisions for all the machines based on f(t)
and Q(t). The idle machines are scheduled according to
the MaxWeight algorithm: suppose machine m is idle at
time slot t, then it serves a local task if αQm(t) ≥ γQ(t)
and a remote task otherwise. Other machines continue to
serve the unfinished tasks, i.e., the execution of tasks is
non-preemptive. Let σm(t) denote the scheduling decision
of machine m at time slot t, then it is a function of Q(t)
and fm(t), and

σm(t) =

{
1 if a local task is to be served,

2 if a remote task is to be served.

Note that σm(t) indicates which queue machine m is
scheduled to serve. It can only take value 1 or 2 since
the machine is scheduled to serve either a local task or
a remote task. If machine m is not idle, i.e., fm(t) = 1
or 2, the schedule σm(t) equals to fm(t) by our settings.
However if machine m is idle, i.e., fm(t) = 0, σm(t) is
still either 1 or 2, decided by the master according to
the MaxWeight algorithm. We use the schedule vector
σ(t) = (σ1(t), σ2(t), · · · , σM (t)) to denote the scheduling
decisions of all the machines.

Remark 1. Here we note that the queues in this queue
architecture can actually have more structure for fairness
consideration. For each queue, instead of maintaining one

Performance Evaluation Review, Vol. 40, No. 4, March 2013 35

queue for all the tasks assigned to it, we can divide the queue
into multiple subqueues according to the job that the task
comes from, i.e., per job subqueues. Then in the scheduling
step, after being scheduled to serve some queue, an idle ma-
chine can further pick a subqueue to serve for the fairness
purpose. However, this change will not affect our analysis
throughout this paper, so we only consider this structure in
the simulation part.

3.3 Queue Dynamics
In time slot t, first the master checks the working status

information f(t) and the queue length Q(t). Then the tasks
arrive at the master and the master does the routing and
the scheduling, yielding A(t) and σ(t). Define{

μl
m(t) = α, μr

m(t) = 0, if σm(t) = 1,

μl
m(t) = 0, μr

m(t) = γ, if σm(t) = 2.

The service from machine m to local queue Qm and re-
mote queue Q are two Bernoulli random variables Sl

m(t) ∼
Bern

(
μl
m(t)

)
and Sr

m(t) ∼ Bern (μr
m(t)). Hence the service

applied to each queue can be expressed by the service vector

S(t) =

(
Sl
1(t), · · · , Sl

M (t),
M∑

m=1

Sr
m(t)

)
,

which is the service process we introduced in Section 3.1
with service rate α or γ. Then the queue lengths satisfy the
following equations.

• Local queues. For any m = 1, 2, · · · ,M ,

Qm(t+ 1) = Qm(t) +Am(t)− Sl
m(t) + Um(t),

where

Um(t) =

{
0 if Qm(t) +Am(t) ≥ 1,

Sl
m(t) if Qm(t) +Am(t) = 0.

(1)

• Remote queue.

Q(t+ 1) = Q(t) +A(t)−
M∑

m=1

Sr
m(t) + U(t),

where

U(t) =

M∑
m=1

Sr
m(t)−

∑
m∈A(t)

Sr
m(t) (2)

and A(t) is the set of machines which actually have some
tasks to serve from the remote queue at time slot t. Note
that there can be some machines that attempt to serve
the remote queue but fail due to insufficient tasks.

The queue dynamics can thus be expressed as

Q(t+ 1) = Q(t) +A(t)− S(t) + U(t), (3)

where U(t) =
(
U1(t), U2(t), · · · , UM (t), U(t)

)
represents the

unused service.
In the case that the service time is deterministic or ge-

ometrically distributed with preemptive tasks, the queue-
ing process {Q(t), t ≥ 0} itself is a Markov chain. However,
the service times in our model are geometrically distributed
with heterogeneous parameters due to data locality, and the
tasks are nonpreemptive. Thus we need to also consider the
working status vector since Q(t) together with f(t) forms

a Markov chain {Z(t) = (Q(t), f(t)) , t ≥ 0}. We assume
that the initial state of this Markov chain is the zero state,
i.e., Z(t) = (Q(0), f(0)) =

(
0(M+1)×1, 0M×1

)
, and the state

space S ⊆ NM+1 × {0, 1, 2}M consists of all the states that
can be reached from the initial state, where N is the set of
nonnegative integers.

Remark 2. The Markov chain {Z(t), t ≥ 0} is irreducible
and aperiodic under our assumptions. For any state Z =
(Q, f) in the state space, since every queue length in the
system is finite, the Markov chain will reach the zero state
from the state Z within finite time slots if there is no ar-
rivals and all the service is 1 during each time slot, which
has a positive probability. Thus there exists n ∈ N such
that the n-step transition probability from Z to the zero
state is positive, i.e., Z can reach the zero state. Therefore,
the Markov chain is irreducible. We can also see that the
transition probability from the zero state to itself is positive,
so the Markov chain is aperiodic.

4. THROUGHPUT OPTIMALITY
In this section, we first identify an outer bound of the

capacity region of the system. We then prove that the pro-
posed task scheduling algorithm stabilizes any arrival rate
vector strictly within this outer bound, which means that
the proposed algorithm is throughput optimal, and the ca-
pacity region coincides with the outer bound.

4.1 Outer Bound of the Capacity Region
Recall that λ = (λ�L : �L ∈ L) is the arrival rate vector.

For any task type �L ∈ L, we assume that the arrivals of
type �L tasks that are allocated to machine m has a rate
λ�L,m; then λ�L =

∑M
m=1 λ�L,m. The set of rates

{
λ�L,m |

�L ∈ L,m = 1, · · · ,M}
will be called a decomposition of the

arrival rate vector λ = (λ�L : �L ∈ L) in the rest of this paper,
and the index range may be omitted for conciseness. For any
machine m, a necessary condition for an arrival rate vector
λ to be supportable is that the average arrivals allocated to
machine m in one time slot must be served within one time
slot, i.e., ∑

�L : m∈�L

λ�L,m

α
+

∑
�L : m/∈�L

λ�L,m

γ
≤ 1, (4)

where the left hand side is the time that machine m needs
to serve the arrivals allocated to it during one time slot on
average, since the service rate is α for local tasks and γ for
remote tasks.

Let Λ be the set of arrival rates such that each element
has a decomposition satisfying (4). Formally,

Λ =

{
λ = (λ�L : �L ∈ L)

∣∣∣ λ�L =
M∑

m=1

λ�L,m, ∀�L ∈ L,

λ�L,m ≥ 0, ∀�L ∈ L, ∀m = 1, · · · ,M, (5)∑
�L : m∈�L

λ�L,m

α
+

∑
�L : m/∈�L

λ�L,m

γ
≤ 1, ∀m = 1, · · · ,M

}
.

Then Λ gives an outer bound of the capacity region.

4.2 Achievability

36 Performance Evaluation Review, Vol. 40, No. 4, March 2013

Theorem 1 (Throughput Optimality). The pro-
posed map-scheduling algorithm stabilizes any arrival rate
vector strictly within Λ. Hence, this algorithm is throughput
optimal, and Λ is the capacity region of the system.

Since {Z(t) = (Q(t), f(t)) , t ≥ 0} is an irreducible and ape-
riodic Markov chain, the stability is defined to be the posi-
tive recurrence of this Markov chain. By the extension of the
Foster-Lyapunov theorem, to prove the positive recurrence,
it is sufficient to find a positive integer T and a Lyapunov
function whose T time slot Lyapunov drift is bounded within
a finite subset of the state space and negative outside this
subset.

Proof. Consider the following Lyapunov function

W (Z(t)) = ‖Q(t)‖2 =
∑M

m=1 Q
2
m(t) +Q

2
(t).

Then for any arrival rate vector λ ∈ Λo, we need to find a
finite set B ⊆ S and two constants δ and C with δ > 0 such
that for some positive integer T ≥ 1,

E
[
W (Z(t0 + T))−W (Z(t))

∣∣ Z(t0) = Z
] ≤ −δ if Z ∈ Bc,

E
[
W (Z(t0 + T))−W (Z(t))

∣∣ Z(t0) = Z
] ≤ C if Z ∈ B.

By the queue dynamics (3), the T time slot Lyapunov drift
can be calculated as

D(Z(t0)) = E
[
W (Z(t0 + T))−W (Z(t0))

∣∣ Z(t0)
]

= E

[
t0+T−1∑
t=t0

(
‖Q(t+ 1)‖2 − ‖Q(t)‖2

) ∣∣∣∣∣ Z(t0)

]

= E
[∑

t

(
2〈Q(t), A(t)− S(t)〉+ 2〈Q(t), U(t)〉

+ ‖A(t)− S(t) + U(t)‖2) ∣∣∣ Z(t0)
]
.

When it is clear from the context, the summation range
may be omitted. By Lemma 1 in the appendix, the second
term 〈Q(t), U(t)〉 is bounded by a constant. Meanwhile, by
our assumption, the arrival vector A(t) and the service S(t)
are bounded for any t, and by definition, each entry of the
unused service U(t) is no greater than the corresponding
entry of S(t), thus also bounded. Therefore, the Lyapunov
drift can be bounded as

D(Z(t0)) ≤ 2E

[
t0+T−1∑
t=t0

〈Q(t), A(t)− S(t)〉
∣∣∣∣∣ Z(t0)

]
+B1,

(6)
where B1 > 0 is a constant not depending on Z(t0).
For any arrival rate vector λ ∈ L ∈ Λo, since Λo is an open

set, there exists ε > 0 such that λ′ = (1+ ε)λ ∈ Λ. Suppose
the decomposition of λ′ which satisfies (4) is

{
λ′
�L,m

}
. Then

{
λ�L,m

∣∣ �L ∈ L,m = 1, 2, · · · ,M}
=

{λ′
�L,m

1 + ε

∣∣∣∣ �L ∈ L,m = 1, 2, · · · ,M
} (7)

is a decomposition of λ, and for any m,

∑
�L : m∈�L

λ�L,m

α
+

∑
�L : m/∈�L

λ�L,m

γ
≤ 1

1 + ε
. (8)

Let λ̃ =
(
λ̃1, λ̃2, · · · , λ̃M+1

)
be defined as

λ̃m =
∑

�L : m∈�L

λ�L,m,m = 1, 2, · · · ,M,

λ̃M+1 =

M∑
m=1

∑
�L : m/∈�L

λ�L,m.

(9)

Utilizing the term 〈Q(t), λ̃〉 we can write the expectation in
the bound (6) as

E

[
t0+T−1∑
t=t0

〈Q(t), A(t)− S(t)〉
∣∣∣∣∣ Z(t0)

]

= E
[∑

t

(〈Q(t), A(t)〉 − 〈Q(t), λ̃〉) ∣∣∣ Z(t0)
]

+ E
[∑

t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉) ∣∣∣ Z(t0)
]
.

Since we use the JSQ routing and MaxWeight scheduling al-
gorithm, by Lemma 2 and Lemma 3, when T is large enough,

E

[
t0+T−1∑
t=t0

〈Q(t), A(t)− S(t)〉
∣∣∣∣∣ Z(t0)

]

≤ −θ
(∑M

m=1 Qm(t0) +Q(t0)
)
+B2,

where θ > 0 and B2 > 0 are two constants not depending
on Z(t0). Hence

D(Z(t0)) ≤ −2θ
(∑M

m=1 Qm(t0) +Q(t0)
)
+B1 + 2B2.

Pick any δ > 0 and let

B =

{
(Q, f) ∈ S

∣∣∣∣ Q1+· · ·+QM+QM+1 ≤ B1 + 2B2 + δ

2θ

}
.

Then B is a finite subset of S. For any Z ∈ Bc, D(Z) ≤
−δ and for any Z ∈ B, D(Z) ≤ B1 + 2B2 = B. This
completes the proof of stability. Thus the proposed task
scheduling algorithm is throughput optimal, and Λ is the
capacity region of the system.

5. SIMULATIONS
In this section, we use simulations to compare the through-

put performance and the delay performance of the proposed
algorithm with the näıve fair sharing algorithm in [13]. The
related simulation parameters are from mimicking real work-
load analyzed in [3]. The näıve fair sharing algorithm selects
the job with the fewest running tasks and thus satisfies max-
min fairness as long as machines become free quickly enough.
For the task selection, it greedily searches for a local task
in the head-of-line job. The performance of the näıve fair
sharing shows a great improvement over the Hadoop’s FIFO
scheduler according to the evaluations in [13].

5.1 Settings
We consider a computing cluster with 1000 machines: 800

machines of them have data on local disks while the other
200 machines do not have data and are just used for com-
putation. A dataset with 106 data chunks is maintained on
this cluster and each data chunk is replicated and placed at
three different machines uniformly. This simulation mod-
els the scenario that data chunks constitute a database like
the user profile database of Facebook, and each job is some
manipulation of the data like searching.

Performance Evaluation Review, Vol. 40, No. 4, March 2013 37

0 2 4 6 8 10
x 104

0

500

1000

1500

Time Slot

N
um

be
r o

f C
on

cu
rr

en
t J

ob
s JSQ with MaxWeight

Naive Fair Sharing

(a) Total Arrival Rate λΣ = 390

0 200 400 600 800
0

200

400

600

800

1000

Total Arrival Rate λΣ

A
ve

ra
ge

 #
 o

f C
on

cu
rr

en
t J

ob
s

JSQ with MaxWeight
Naive Fair Sharing

(b) Throughput Region

Figure 3: Throughput Performance

By the analysis of workloads from [3], the number of tasks
in a job follows a power-law distribution, so we use a trun-
cated Pareto distribution ranging from 10 to 100, 000 with
shape parameter 1.9 to generate the number of tasks for
each job. Each task processes one data chunk uniformly se-
lected from the dataset. The service rates for local tasks
and remote tasks are α = 0.8 and γ = 0.2, respectively,
so the total task arrival rate λΣ should be no larger than
800α + 200γ = 680 per time slot. The number of jobs ar-
riving at each time slot follows a discrete distribution. We
run the simulations for the two algorithms for a wide range
of total arrival rates to evaluate performance.

As noted in Section 3, we maintain multiple subqueues
for each queue, and the subqueue corresponding to the job
with the fewest running tasks is selected during scheduling,
as in the näıve fair sharing.

5.2 Throughput Performance
We keep track of the number of concurrent jobs in the

system to observe stability. Both algorithms can keep the
system stable for small arrival rates. Under the näıve fair
sharing, the number of concurrent jobs increases almost lin-
early with the passage of time for λΣ ≥ 350, which implies
instability. The proposed algorithm becomes unstable only
at λΣ = 670. Figure 3a shows a representative sample of
the evolution of the number of concurrent jobs over time,
which illustrates the comparison of instability and stability.
Figure 3b shows the average number of concurrent jobs in
the last 250, 000 time slots for each arrival rate. The turning
point positions indicate the difference between the through-
put that the two algorithms can achieve. So the throughput
under the proposed algorithm is increased by more than 80%
compared with the näıve fair sharing.

5.3 Delay Performance

0 200 400 600 800
0

50

100

150

200

250

Total Arrival Rate λΣ

A
ve

ra
ge

 J
ob

 D
el

ay JSQ with MaxWeight
Naive Fair Sharing

(a) Job Delay in Steady State

0 200 400 600 800
0

1000

2000

3000

4000

5000

Total Arrival Rate λΣ

A
ve

ra
ge

 T
as

k
D

el
ay JSQ with MaxWeight

Naive Fair Sharing

(b) Task Delay in Steady State

Figure 4: Delay Performance.

For each total arrival rate λΣ, we calculate the average
delay for jobs and tasks departing during the last 250, 000
time slots and illustrate the results in Figure 4a and Fig-
ure 4b, respectively. We did not plot the results for λΣ

greater than 390 under the näıve fair sharing and λΣ equal
to 670 under the proposed algorithm since the delay be-
comes very large (more than ten times larger) due to insta-
bility, which also confirms the throughput difference of the
two algorithms. For small arrival rates, the proposed algo-
rithm roughly halves the average job delay compared with
the näıve fair sharing (Figure 4a), while the average task
delay are roughly the same (Figure 4b).

6. CONCLUSION
We considered map scheduling algorithms in MapReduce

with data locality. The primary contribution is the devel-
opment of a scheduling algorithm which is throughput opti-
mal. We first presented the capacity region of a MapReduce
computing cluster with data locality and then we proved
the throughput optimality. Simulation results were given
not only to illustrate the throughput performance but also
to evaluate the delay performance for a large range of total
arrival rates.

Acknowledgement

Research supported in part by NSF Grants ECCS-1255425.

7. REFERENCES

[1] Hadoop. http://hadoop.apache.org.

[2] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, I. Stoica, D. Harlan, and E. Harris.
Scarlett: coping with skewed content popularity in
mapreduce clusters. In Proc. European Conf.

38 Performance Evaluation Review, Vol. 40, No. 4, March 2013

Computer Systems (EuroSys), pages 287–300,
Salzburg, Austria, 2011.

[3] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Stoica.
Pacman: coordinated memory caching for parallel
jobs. In Proc. Conf. Networked Systems Design and
Implementations (USENIX), pages 20–20, 2012.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. ACM Commun.,
51(1):107–113, Jan. 2008.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In Proc. ACM Symp. Operating
Systems Principles (SOSP), pages 29–43, Bolton
Landing, NY, 2003.

[6] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: fair scheduling
for distributed computing clusters. In Proc. ACM
Symp. Operating Systems Principles (SOSP), pages
261–276, Big Sky, MT, 2009.

[7] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan.
An analysis of traces from a production mapreduce
cluster. In Proc. IEEE/ACM Int. Conf. Cluster, Cloud
and Grid Computing (CCGRID), pages 94–103,
Melbourne, Australia, 2010.

[8] S. T. Maguluri and R. Srikant. Scheduling jobs with
unknown duration in clouds. In Proc. IEEE Int. Conf.
Computer Communications (INFOCOM), Turin, Italy,
2013.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In IEEE Symp.
Mass Storage Systems and Technologies (MSST),
pages 1–10, Incline Villiage, NV, May 2010.

[10] L. Tassiulas and A. Ephremides. Stability properties of
constrained queueing systems and scheduling policies
for maximum throughput in multihop radio networks.
IEEE Trans. Autom. Control, 4:1936–1948, Dec. 1992.

[11] L. Tassiulas and A. Ephremides. Dynamic server
allocation to parallel queues with randomly varying
connectivity. IEEE Trans. Inf. Theory, 39:466–478,
Mar. 1993.

[12] T. White. Hadoop: The definitive guide. Yahoo Press,
2010.

[13] M. Zaharia, D. Borthakur, J. Sen Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In Proc. European
Conf. Computer Systems (EuroSys), pages 265–278,
Paris, France, 2010.

APPENDIX

We follow the same notations as in Section 4.

Lemma 1 (Approximate orthogonality). For any
time slot t,

〈Q(t), U(t)〉 ≤ M2,

where M is the number of machines in the system.

Proof. For any time slot t,

〈Q(t), U(t)〉 =∑M
m=1 Qm(t)Um(t) +Q(t)U(t).

For any m = 1, · · · ,M , by the definition of Um(t) in (1),
Um(t) > 0 implies that Qm(t) + Am(t) = 0, which further

implies that Qm(t) = 0 since all the quantities here are
nonnegative. Thus Qm(t)Um(t) = 0.

By the definition of U(t) in (2), when there exists some
unused service U(t) > 0, the number of tasks in Q must be
less than the number of machines which are scheduled to
serve Q, and thus less than M , i.e., Q(t) +A(t) < M . Note
that U(t) ≤ M , thus Q(t)+U(t) ≤ Q(t)+A(t)+U(t) ≤ 2M .

Then Q(t)U(t) <
(
Q(t) + U(t)

)2
/4 ≤ M2. Combining this

with the first part yields

〈Q(t), U(t)〉 =∑M
m=1 Qm(t)Um(t) +Q(t)U(t) ≤ M2.

Lemma 2. Consider an arrival rate vector λ and the cor-
responding vector λ̃ defined in (9). Then under the JSQ
routing algorithm, for any t such that t0 ≤ t < t0 + T ,

E
[〈Q(t), A(t)〉 − 〈Q(t), λ̃〉 ∣∣ Z(t0)

] ≤ 0.

Proof. By taking conditional expectation we have

E
[〈Q(t), A(t)〉 − 〈Q(t), λ̃〉 ∣∣ Z(t0)

]
= E

[
E
[〈Q(t), A(t)〉 − 〈Q(t), λ̃〉 ∣∣ Z(t)

] ∣∣∣ Z(t0)
]
, (10)

where (10) follows follows from the fact that Q(t) and A(t)
are conditionally independent from Z(t0) given Z(t). Using
definitions and changing the order of summations yield

E
[〈Q(t), A(t)〉 − 〈Q(t), λ̃〉 ∣∣ Z(t)

]
= E

[∑
m Qm(t)Am(t) +Q(t)A(t)

−
∑
m

Qm(t)
∑

�L : m∈�L

λ�L,m

−Q(t)
∑
m

∑
�L : m/∈�L

λ�L,m

∣∣∣∣ Z(t)

]

=
∑
�L∈L

(
E

⎡
⎣∑

m∈�L

Qm(t)A�L,m(t) +Q(t)A�L(t)

∣∣∣∣∣∣ Z(t)

⎤
⎦

−
∑
m∈�L

Qm(t)λ�L,m −Q(t)
∑
m/∈�L

λ�L,m

)
. (11)

For each type �L, denote

Q∗
�L
(t) = min

{
min
m∈�L

Qm(t), Q(t)

}
.

According to the JSQ routing algorithm, A�L(t) is routed
to the shortest one among its three local queues and the
common remote queue, so the arrival of type �L tasks to this
queue equals A�L(t) and the arrivals of type �L tasks to the

other queues are zero. Thus for each �L,∑
m∈�L Qm(t)A�L,m(t) +Q(t)A�L(t) = Q∗

�L
(t)A�L(t),

and then

E

⎡
⎣∑

m∈�L

Qm(t)A�L,m(t) +Q(t)A�L(t)

∣∣∣∣∣∣ Z(t)

⎤
⎦

= Q∗
�L
(t)E

[
A�L(t)

∣∣ Z(t)
]

= Q∗
�L
(t)λ�L.

Performance Evaluation Review, Vol. 40, No. 4, March 2013 39

It is obvious that∑
m∈�L

Qm(t)λ�L,m +Q(t)
∑
m/∈�L

λ�L,m

≥ Q∗
�L
(t)

(∑
m∈�L

λ�L,m +
∑
m/∈�L

λ�L,m

)

= Q∗
�L
(t)λ�L.

Therefore by (11), E
[〈Q(t), A(t)〉 − 〈Q(t), λ̃〉 ∣∣ Z(t)

] ≤ 0,
and then by (10) we can conclude that

E
[〈Q(t), A(t)〉 − 〈Q(t), λ̃〉 ∣∣ Z(t0)

] ≤ 0.

Lemma 3. Consider an arrival rate vector λ ∈ Λo and
the corresponding vector λ̃ defined in (9). Then under the
MaxWeight scheduling algorithm, there exists a large enough
T such that

E

[
t0+T−1∑
t=t0

(
〈Q(t), λ̃〉 − 〈Q(t), S(t)〉

) ∣∣∣∣∣ Z(t0)

]

≤ −θ

(
M∑

m=1

Qm(t0) +Q(t0)

)
+B2,

where θ and B2 are positive constants.

Proof. Consider the following random variables

t∗m = min {τ : τ ≥ t0, fm(τ) = 0} ,m = 1, 2, · · · ,M
t∗ = max

1≤m≤M
t∗m. (12)

Then t∗m is the first time slot after t0 at which machine m
makes a MaxWeight scheduling decision. We can use t∗ to
decompose the probability space. Let T = JK, where J and
K are integers. Then

E
[∑

t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉) ∣∣∣ Z(t0)
]

= E
[∑

t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉) ∣∣∣ Z(t0), t
∗ ≥ t0 +K

]
· Pr (t∗ ≥ t0 +K | Q(t0), f(t0)) (13)

+ E
[∑

t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉) ∣∣∣ Z(t0), t
∗ < t0 +K

]
· Pr (t∗ < t0 +K | Q(t0), f(t0)) . (14)

By definitions,∑
t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉)
=
∑
t

∑
m

(
Qm(t)

∑
�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m

−Qm(t)Sl
m(t)−Q(t)Sr

m(t)

)
.

For the term (13), we will show that the conditional expec-
tation is bounded by TM

(∑
m Qm(t0) + Q(t0)

)
plus some

constant. Since the service time follows geometric distri-
bution, it can be seen from Lemma 4 that the probability
Pr
(
t∗ ≥ t0 + K | Z(t0)

)
can be arbitrarily small when K

is large enough. Then the term (13) can be bounded by
the product of a small number and the sum of all the queue
lengths. Recall that all the arrival processes are bounded

and let us assume that they are bounded by Amax. Then for
any t such that t0 ≤ t < t0 + T and any m = 1, 2, · · · ,M ,

Qm(t) ≤ Qm(t0) + (t− t0)NAmax ≤ Qm(t0) + TNAmax,

Q(t) ≤ Q(t0) + (t− t0)NAmax ≤ Q(t0) + TNAmax.

(15)

Meanwhile, according to (8), we have
∑

�L:m∈�L λ�L,m < 1 and∑
�L:m/∈�L λ�L,m < 1 for any m = 1, 2, · · · ,M . Thus for any t

such that t0 ≤ t < t0 + T ,

M∑
m=1

(
Qm(t)

∑
�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m

−Qm(t)Sl
m(t)−Q(t)Sr

m(t)

)
≤∑M

m=1

(
Qm(t0) +Q(t0) + 2TNAmax

)
≤ M

(∑M
m=1 Qm(t0) +Q(t0) + 2TNAmax

)
,

and further

E

[
t0+T−1∑
t=t0

(
〈Q(t), λ̃〉 − 〈Q(t), S(t)〉

) ∣∣∣∣∣ Z(t0), t
∗ ≥ t0 +K

]

≤ E

[
t0+T−1∑
t=t0

M

(
M∑

m=1

Qm(t0) +Q(t0) + 2TNAmax

)
∣∣∣∣∣ Z(t0), t

∗ ≥ t0 +K

]

= TM
(∑M

m=1 Qm(t0) +Q(t0)
)
+ 2T 2MNAmax. (16)

For the term (14), we divide the summation from t = t0 to
t = t0+T −1 into two parts: from t = t0 to t = t∗ and from
t = t∗+1 to t = t0+T−1. We will bound the first part by the
similar method used for the term (13). Since t∗ < t0+K, the
bound will beKM

(∑
m Qm(t0)+Q(t0)

)
plus some constant.

The second part will be bounded by a negative quantity
proportional to −(J−1)KM

(∑
m Qm(t0)+Q(t0)

)
, and then

we can choose large enough J to make the sum negative.
Using the properties of conditional expectations we have

E
[∑

t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉) ∣∣∣ Z(t0), t
∗ < t0 +K

]
= E

[
E
[∑

t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉) ∣∣ t∗, Z(t0)
]

∣∣∣ Z(t0), t
∗ < t0 +K

]
, (17)

and then

E
[∑

t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉) ∣∣∣ t∗, Z(t0)
]

=

t∗∑
t=t0

(
M∑

m=1

E

[
Qm(t)

∑
�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m

−Qm(t)Sl
m(t)−Q(t)Sr

m(t)

∣∣∣∣ t∗, Z(t0)

])

+

t0+T−1∑
t=t∗+1

(
M∑

m=1

E

[
Qm(t)

∑
�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m

−Qm(t)Sl
m(t)−Q(t)Sr

m(t)

∣∣∣∣ t∗, Z(t0)

])
. (18)

40 Performance Evaluation Review, Vol. 40, No. 4, March 2013

For the summation from t = t0 to t = t∗, we still use
the bounds in (15), which are based on the boundedness of
arrivals, to get

t∗∑
t=t0

E

[
M∑

m=1

(
Qm(t)

∑
�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m

−Qm(t)Sl
m(t)−Q(t)Sr

m(t)

) ∣∣∣∣∣ t∗, Z(t0)

]

≤
t∗∑

t=t0

E

[
M∑

m=1

(
Qm(t0) +Q(t0) + 2TNAmax

) ∣∣∣∣∣ t∗, Z(t0)

]

≤ (t∗ − t0 + 1)M
(∑M

m=1 Qm(t0) +Q(t0)
)

+ 2(t∗ − t0 + 1)TMNAmax. (19)

For the second summation from t = t∗+1 to t = t0+T−1,
we use the properties of conditional expectations. Since t∗ ≤
t − 1, t∗ is determined by

{
Q(t0), f(t0), Q(t0 + 1), f(t0 +

1), · · · , Q(t − 1), f(t − 1)
}
. Meanwhile, given Z(t), S(t) is

independent from all the previous queue lengths and working
status. Therefore, for any t such that t∗+1 ≤ t ≤ t0+T −1
and any m,

E

[
Qm(t)

∑
�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m

−Qm(t)Sl
m(t)−Q(t)Sr

m(t)

∣∣∣∣ t∗, Z(t0)

]

= E

[
E

[
Qm(t)

∑
�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m (20)

−
(
Qm(t)Sl

m(t) +Q(t)Sr
m(t)

) ∣∣∣∣ Z(t)

] ∣∣∣∣∣ t∗, Z(t0)

]
.

= E

[
Qm(t)

∑
�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m

−
(
Qm(t)E

[
Sl
m(t)

∣∣ Z(t)
]

+Q(t)E
[
Sr
m(t)

∣∣ Z(t)
]) ∣∣∣∣ t∗, Z(t0)

]
. (21)

The sum of the first two terms satisfies

Qm(t)
∑

�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m

= αQm(t)
∑

�L : m∈�L

λ�L,m

α
+ γQ(t)

∑
�L : m/∈�L

λ�L,m

γ

≤ max
{
αQm(t), γQ(t)

}(∑
�L : m∈�L

λ�L,m

α
+

∑
�L : m/∈�L

λ�L,m

γ

)

(a)

≤ 1

1 + ε
max

{
αQm(t), γQ(t)

}
, (22)

where (a) follows from the choice of the decomposition of λ
in (8). For the service part in (21), by the construction of
Sl
m(t) and Sr

m(t), they are conditionally independent from
Q(t) and f(t) given σm(t). Therefore

E
[
Sl
m(t)

∣∣ Z(t)
]
= E

[
E
[
Sl
m(t)

∣∣ σm(t)
] ∣∣∣ Z(t)

]
E
[
Sr
m(t)

∣∣ Z(t)
]
= E

[
E
[
Sr
m(t)

∣∣ σm(t)
] ∣∣∣ Z(t)

]
.

Consider the following random variables

τ t
m = max {τ : τ ≤ t, fm(τ) = 0} ,m = 1, 2, · · · ,M. (23)

Then τ t
m is the last time slot before t at which machine

m makes a scheduling decision, so the scheduling decision
of machine m remains the same from time slot τ t

m to t,
i.e., σm(t) = σm(τ t

m). Meanwhile, since the service of each
queue in one time slot is also bounded, according to the
queue dynamics we have, for any m = 1, 2, · · · ,M ,

Qm(t) ≥ Qm(τ t
m)− (t− τ t

m) ≥ Qm(τ t
m)− T,

Q(t) ≥ Q(τ t
m)−M(t− τ t

m) ≥ Q(τ t
m)−MT.

(24)

Now the service part can be written as

Qm(t)E
[
Sl
m(t)

∣∣ Z(t)
]
+Q(t)E

[
Sr
m(t)

∣∣ Z(t)
]

= E
[
Qm(t)E

[
Sl
m(t)

∣∣ σm(τ t
m)
]

+Q(t)E
[
Sr
m(t)

∣∣ σm(τ t
m)
] ∣∣∣ Z(t)

]
≥ E

[
Qm(τ t

m)E
[
Sl
m(t)

∣∣ σm(τ t
m)
]

+Q(τ t
m)E

[
Sr
m(t)

∣∣ σm(τ t
m)
] ∣∣∣ Z(t)

]
− (M + 1)T

(a)

≥ E
[
max

{
αQm(τ t

m), γQ(τ t
m)
} ∣∣∣ Z(t)

]
− (M + 1)T

(b)

≥ max
{
αQm(t), γQ(t)

}− (2M + 1)T, (25)

where the inequality (a) follows from the following facts: if
σm(τ t

m) = 1, then according to the MaxWeight scheduling
we have αQm(τ t

m) ≥ γQ(τ t
m) and

E
[
Sl
m(t)

∣∣ σm(τ t
m)
]
= α, E

[
Sr
m(t)

∣∣ σm(τ t
m)
]
= 0;

otherwise, if σm(τ t
m) = 2, then αQm(τ t

m) ≤ γQ(τ t
m) and

E
[
Sl
m(t)

∣∣ σm(τ t
m)
]
= 0, E

[
Sr
m(t)

∣∣ σm(τ t
m)
]
= γ.

The inequality (b) follows from the boundedness of the ser-
vice. Combing inequalities (22) and (25) and inserting them
back to (21) yield

E

[
Qm(t)

∑
�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m

−
(
Qm(t)Sl

m(t) +Q(t)Sr
m(t)

) ∣∣∣∣ t∗, Z(t0)

]

≤ E

[
− ε

1 + ε
max{αQm(t), γQ(t)}

∣∣∣∣ t∗, Z(t0)

]
+ (2M + 1)T

≤ − ε

1 + ε
max

{
αQm(t0), γQ(t0)

}
+ (2M + 1)T +

εTM

1 + ε

≤ − ε

1 + ε

(
γM

γM + α
· αQm(t0) +

α

γM + α
· γQ(t0)

)
+ (2M + 1)T + εTM/(1 + ε)

= − εαγM

(1 + ε)(γM + α)

(
Qm(t0) +

Q(t0)

M

)
+ (2M + 1)T + εTM/(1 + ε).

Performance Evaluation Review, Vol. 40, No. 4, March 2013 41

Applying this bound to (20) and (18) gives

t0+T−1∑
t=t∗+1

(
M∑

m=1

E

[
Qm(t)

∑
�L : m∈�L

λ�L,m +Q(t)
∑

�L : m/∈�L

λ�L,m

−Qm(t)Sl
m(t)−Q(t)Sr

m(t)

∣∣∣∣ t∗, Z(t0)

])

≤ − (t0 + T − t∗ − 1)εαγM

(1 + ε)(γM + α)

(
M∑

m=1

Qm(t0) +Q(t0)

)

+ TM
(
(2M + 1)T + εTM/(1 + ε)

)
.

Now we have bounded the two terms which sum up to

E
[∑

t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉) ∣∣∣ t∗, Z(t0)
]
. Thus by (17)

E
[∑

t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉) ∣∣∣ Z(t0), t
∗ < t0 +K

]
≤ E

[(
(t∗ − t0 + 1)M − (t0 + T − t∗ − 1) εαγM

(1 + ε)(γM + α)

)

·
(

M∑
m=1

Qm(t0) +Q(t0)

) ∣∣∣∣∣ Z(t0), t
∗ < t0 +K

]

+ E
[
2(t∗ − t0 + 1)TMNAmax + TM

(
(2M + 1)T

+ εTM/(1 + ε)
) ∣∣∣ Z(t0), t

∗ < t0 +K
]

≤
(
KM − (J − 1)KMεαγ

(1 + ε)(γM + α)

)(M∑
m=1

Qm(t0) +Q(t0)

)

+

(
2KTMNAmax + TM

(
(2M + 1)T +

εTM

1 + ε

))
.

(26)

Let φ = εαγ
(1+ε)(γM+α)

and J1 = 1+ 1
φ
. Then we pick a J > J1

to make KM − (J − 1)KMφ negative.
Applying the bounds (16), (26) and the bounds for the

probabilities in Lemma 4 to (13) and (14) we obtain,

E
[∑

t

(〈Q(t), λ̃〉 − 〈Q(t), S(t)〉) ∣∣∣ Z(t0)
]

≤ TM

(
M∑

m=1

Qm(t0) +Q(t0)

)(
1−

(
1− (1− γ)K

)M
)

+

(
KM − (J − 1)KMεαγ

(1 + ε)(γM + α)

)(M∑
m=1

Qm(t0) +Q(t0)

)

·
(
1− (1− γ)K

)M

+ 2T 2MNAmax

+

(
2KTMNAmax + TM

(
(2M + 1)T +

εTM

1 + ε

))
= TM

(
P1(K) + (1 + φ)P2(K)/J − φP2(K)

)
· (∑M

m=1 Qm(t0) +Q(t0)
)
+B2,

where

P1(K) = 1− (
1− (1− γ)K

)M
, P2(K) =

(
1− (1− γ)K

)M
,

and

B2 = 2T 2MNAmax +
(
2KTMNAmax

+ TM
(
(2M + 1)T + εTM/(1 + ε)

))
> 0.

Now we are going to choose K and J large enough to
make the coefficient of the sum of the queue lengths strictly
negative. Pick any θ such that 0 < θ < φ. Since P1(K) goes
to zero as K goes to infinity, there exists K1 such that for
any K > K1, P1(K) ≤ φ−θ

3TM
. Since P2(K) goes to one as K

goes to infinity, there exists K2 such that for any K > K2,

P2(K) ≥ 1
TM

− φ−θ
3φTM

. Let J2 = 3TM(1+φ)
φ−θ

, then for any

J > J2,
1
J
(1 + φ)P2(K) < φ−θ

3TM
. By the above inequalities,

picking a K such that K > max {K1,K2} and a J such that
J > max {J1, J2} yields

TM
(
P1(K) + (1 + φ)P2(K)/J − φP2(K)

)
≤ (φ− θ)/3 + (φ− θ)/3− φ

(
1− (φ− θ)/3φ

)
= −θ.

Thus

E

[
t0+T−1∑
t=t0

(
〈Q(t), λ̃〉 − 〈Q(t), S(t)〉

) ∣∣∣∣∣ Z(t0)

]

≤ −θ

(
M∑

m=1

Qm(t0) +Q(t0)

)
+B2.

Lemma 4. Consider the random variable t∗ defined in
(12). Then

Pr(t∗ < t0 +K | Z(t0)) ≥
(
1− (1− γ)K

)M
, (27)

Pr(t∗ ≥ t0 +K | Z(t0)) ≤ 1− (
1− (1− γ)K

)M
. (28)

Proof. Given f(t0), the distributions of all the service
time are determined, so under this condition, the random
variables t∗m,m = 1, 2, · · · ,M defined in (12) are indepen-
dent from each other. Therefore

Pr(t∗ < t0 +K | Z(t0))

= Pr(t∗1 < t0 +K, t∗2 < t0 +K, · · · , t∗M < t0 +K | Z(t0))

=
∏M

m=1 Pr(t
∗
m < t0 +K | Z(t0))

=
(
1− (1− α)K

)J1
(
1− (1− γ)K

)J2 ,

where J1 =
∑

m I(fm(t) = 1) and J2 =
∑

m I(fm(t) = 2)
and I(·) is the indicator function. Obviously J1 + J2 ≤ M
and 0 < 1− (1− γ)K < 1. Then since α ≥ γ,

Pr(t∗ < t0 +K | Z(t0)) ≥
(
1− (1− γ)K

)M
and

Pr(t∗ ≥ t0 +K | Z(t0)) = 1− Pr(t∗ < t0 +K | Z(t0))

≤ 1− (
1− (1− γ)K

)M
.

42 Performance Evaluation Review, Vol. 40, No. 4, March 2013

